1.Liuwei Dihuangwan Promote Mitophagy to Modulate Neuroinflammation and Behavioral Impairments in Rat Model of Autism Spectrum Disorder (ASD)
Pengjue HUANG ; Mingyue JIANG ; Ji WU ; Niya YIN ; Lei OUYANG ; Qinquan ZHU ; Di ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):52-60
ObjectiveTo observe the effect of Liuwei Dihuangwan on behavioral impairments in the rat model of autism spectrum disorder (ASD) and explore the mechanism of action. MethodsTwelve SD pregnant rats were intraperitoneally injected with valproic acid (VPA) (10 rats) or normal saline (2 rats), and male offspring were selected to establish the model of ASD and the control rats. Rats were randomly assigned into model, low-dose (0.75 g·kg-1) and high-dose (1.5 g·kg-1) Liuwei Dihuangwan, vitamin D (positive drug, 3.7×10-5 g·kg-1), and blank groups. Each group was administrated with the corresponding concentration of drugs or the same volume of normal saline by gavage for 2 weeks. After the intervention, the three-chamber social test was conducted to evaluate social interaction and social preference. The open field test was carried out to observe spontaneous behavior and anxiety state. Hematoxylin-eosin staining (HE) was used to observe the pathological changes of the prefrontal tissue. Transmission electron microscopy was employed to observe the ultrastructure of mitochondria in prefrontal neurons. Immunofluorescence was used to detect the expression of ionized calcium-binding adapter molecule-1 (Iba-1) in the prefrontal tissue. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Western blot was employed to assess the expression differences of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), adenosine monophosphate-activated protein kinase (AMPK), phosphorylated Unc-51-like autophagy-activating kinase 1 (p-ULK1), Unc-51-like autophagy-activating kinase 1 (ULK1), and FUN14 domain-containing protein 1 (FUNDC1). ResultsCompared with the blank group, the model group spent less time sniffing stranger 1 and stranger 2 in the three-chamber social test (P<0.01) and showed reductions in the total distance traveled, average speed, distance traveled in the central area, and time spent in the central area in the open field test (P<0.01). In addition, the model group showed extensive apoptosis of neurons, with shrunken nuclei and red-stained cytoplasm, and extensive necrosis of neurons in the prefrontal tissue, mitochondrial swelling, decreased matrix density, disrupted cristae, and autophagic lysosomes in neurons, increases in the rate of Iba-1 positive cells in the prefrontal area (P<0.01) and the levels of TNF-α and IL-6 (P<0.01), and down-regulation in the expression of p-AMPK/AMPK, p-ULK1/ULK1, and FUNDC1 (P<0.01). Compared with the model group, low-dose and high-dose Liuwei Dihuangwan and the vitamin D prolonged the time spent sniffing stranger 1 and stranger 2 in the three-chamber social test (P<0.05, P<0.01), increased the total distance traveled, average speed, distance traveled in the central area, and time spent in the central area in the open field test (P<0.05, P<0.01), restored the morphology of neurons in the prefrontal tissue, decreased the number of apoptotic cells, alleviated the swelling of mitochondria in neurons, increased the matrix density, mitigated the fragmentation and disorder of cristae, and increased the number of autophagosomes. Moreover, the drugs decreased the rate of Iba-1 positive cells in the prefrontal area (P<0.01), lowered the levels of TNF-α and IL-6 (P<0.01), and up-regulated the expression of p-AMPK/AMPK, p-ULK1/ULK1, and FUNDC1 (P<0.01). ConclusionLiuwei Dihuangwan ameliorate autism-like behaviors and reduce neuronal apoptosis and neuroinflammatory damage in the rat model of ASD by promoting mitophagy mediated by the AMPK/ULK1/FUNDC1 pathway.
2.Syndrome Differentiation and Treatment Mechanisms of Inflammatory Injury in Diabetic Cardiomypathy from Theory of "Gaozhuo"
Xiaoyue WANG ; Yunfeng YU ; Xiangning HUANG ; Yixin XIANG ; Sihao ZHANG ; Qin XIANG ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):235-244
Diabetic cardiomyopathy (DCM) is one of the most common complications of diabetes mellitus and is a major threat to global health. As a key mechanism in the occurrence and progression of DCM, the inflammatory response persists throughout the entire course of the DCM. The Gaozhuo theory suggests that the basic pathogenesis of inflammatory injury in DCM is the Qi deficiency of spleen and kidney and Gaozhuo invasion, and divides the pathological process into three phases: Gaozhuo invasion, turbid heat damage to the channels, and turbid blood stasis and heat junction. Among them, the Qi deficiency of spleen and kidney and the endogenous formation of Gaozhuo represent the process of inflammatory factor formation induced by glucose metabolism disorders. Turbid heat damage to the channels refers to the process of myocardial inflammatory injury mediated by inflammatory factors, and turbid blood stasis and heat junction are the process of myocardial injury developing toward myocardial fibrosis and ventricular remodeling. As the disease continues to progress, it eventually develops into a depletion of the heart Yang, leading to the ultimate regression of heart failure. According to the theory of Gaozhuo, traditional Chinese medicine (TCM) should regulate inflammatory injury in DCM by strengthening the spleen and tonifying the kidney to address the root cause, and resolving dampness and lowering turbidity to treat the symptoms. If the turbidity has been stored for a long time and turns into heat, strengthening the spleen and tonifying the kidney, and clearing heat and resolving turbidity should be the therapy. If the turbidity, stasis, and heat are knotted in the heart and collaterals, strengthening the spleen and tonifying the kidney, and resolving stasis and lowering turbidity should be the therapy. TCM compounds and monomers can regulate the inflammatory response in DCM. TCM compounds can be divided into the categories for benefiting Qi to resolve turbidity, benefiting Qi and clearing heat to resolve turbidity, and benefiting Qi and activating blood to reduce turbidity. The compounds can inhibit upstream signals of inflammation and expression of inflammatory factors, improve the inflammatory damage to myocardium and blood vessels, myocardial fibrosis, and cardiac systole and diastole, and thus slow down the onset and progression of DCM.
3.Research progress on the role of antigen-presenting cells in xenotransplantation
Kankan SHUI ; Haoran ZHOU ; Ye XU ; Qiulin LUO ; Tengfang LI ; Hedong ZHANG ; Longkai PENG ; Helong DAI
Organ Transplantation 2026;17(1):9-15
Organ transplantation is an effective alternative treatment for patients with end-stage organ failure. However, the shortage of donor organs has limited the widespread application of clinical transplantation. In recent years, breakthroughs in CRISPR-Cas9 gene editing technology have overcome the barrier of hyperacute rejection in xenotransplantation, offering a potential solution to the organ shortage crisis. Rejection remains a critical factor affecting graft survival. Antigen-presenting cells play a vital role in the initiation and progression of rejection and immune regulation in xenotransplantation. Therefore, in-depth investigation into the role of antigen-presenting cells in xenotransplantation is of great significance. This article summarizes the roles and therapeutic strategies of professional antigen-presenting cells, including macrophages, dendritic cells and B cells in xenotransplantation, aiming to provide insights for future research on immune regulation mechanisms in this field.
4.Staged Characteristics of Mitochondrial Energy Metabolism in Chronic Heart Failure with Heart-Yang Deficiency Syndrome and Prescription Intervention from Theory of Reinforcing Yang
Zizheng WU ; Xing CHEN ; Lichong MENG ; Yao ZHANG ; Peng LUO ; Jiahao YE ; Kun LIAN ; Siyuan HU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):129-138
Chronic heart failure (CHF) is a complex clinical syndrome caused by ventricular dysfunction, with mitochondrial energy metabolism disorder being a critical factor in disease progression. Heart-Yang deficiency syndrome, as the core pathogenesis of CHF, persists throughout the disease course. Insufficiency of heart-Yang leads to weakened warming and propelling functions, resulting in the accumulation of phlegm-fluid, blood stasis, and dampness. This eventually causes Qi stagnation with phlegm obstruction and blood stasis with water retention, forming a vicious cycle that exacerbates disease progression. According to the theory of reinforcing Yang, the clinical experience of the traditional Chinese medicine (TCM) master Tang Zuxuan in treating CHF with heart-Yang deficiency syndrome, and achievements from molecular biological studies, this study innovatively proposes an integrated research framework of "TCM syndrome differentiation and staging-mitochondrial metabolism mechanisms-intervention with Yang-reinforcing prescriptions" which is characterized by the integration of traditional Chinese and Western medicine. Heart-Yang deficiency syndrome is classified into mild (Stage Ⅰ-Ⅱ), severe (Stage Ⅲ), and critical (Stage Ⅳ) stages. The study elucidates the precise correlations between the pathogenesis of each stage and mitochondrial metabolism disorders from theoretical, pathophysiological, and therapeutic perspectives. The mild stage is characterized by impaired biogenesis and substrate-utilization imbalance, corresponding to heart-Yang deficiency and phlegm-fluid aggregation. Linggui Zhugantang and similar prescriptions can significantly improve the expression of peroxisome proliferator-activated receptor gamma co-activator-1α(PGC-1α)/silent information regulator 2 homolog 1 (SIRT1) and ATPase activity. The severe stage centers on oxidative stress and structural damage, reflecting Yang deficiency with water overflow and phlegm-blood stasis intermingling. At this stage, Zhenwu Tang and Qiangxin Tang can effectively mitigate oxidative stress damage, increase adenosine triphosphate (ATP) content, and repair mitochondrial structure. The critical stage arises from calcium overload and mitochondrial disintegration, leading to the collapse of Yin-Yang equilibrium. At this stage, Yang-restoring and crisis-resolving prescriptions such as Fuling Sini Tang and Qili Qiangxin capsules can inhibit abnormal opening of the mitochondrial permeability transition pore (MPTP), reduce cardiomyocyte apoptosis rate, and protect mitochondrial function. By summarizing the characteristics of mitochondrial energy metabolism disorders at different stages of CHF, this study explores the application of the theory of reinforcing Yang in treating heart-Yang deficiency syndrome and provides new insights for the clinical diagnosis and treatment of CHF.
5.Traditional Chinese Medicine Treatment of Chronic Heart Failure Based on AMPK Signaling Pathway
Kun LIAN ; Lichong MENG ; Xueqin WANG ; Yubin ZHANG ; Lin LI ; Xuhui TANG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):139-148
Chronic heart failure (CHF) is a group of complex clinical syndromes caused by abnormal changes in the structure and/or function of the heart due to various reasons, resulting in disorders of ventricular contraction and/or diastole. CHF is a condition where primary diseases such as coronary heart disease, hypertension and pulmonary heart disease recur frequently and persist for a long time, presenting blood stasis in meridians and collaterals, stagnation of water and dampness, and accumulation of Qi in collaterals. Its pathogenesis is complex and may involve myocardial energy metabolism disorders, oxidative stress responses, myocardial cell apoptosis, autophagy, inflammatory responses, etc. According to the theory of restraining hyperactivity to acquire harmony, we believe that under normal circumstances, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway functions normally, maintaining human physiological activities and energy metabolism. Under pathological conditions, the AMPK signaling pathway is abnormal, causing energy metabolism disorders, inflammatory responses, and myocardial fibrosis. Traditional Chinese medicine (TCM) can regulate the AMPK signaling pathway through multiple mechanisms, targets, and effects, effectively curbing the occurrence and development of CHF. It has gradually become a research hotspot in the prevention and treatment of this disease. Guided by the theory of TCM, our research group, through literature review, summarized the relationship between the AMPK pathway and CHF and reviewed the research progress in the prevention and control of CHF with TCM active ingredients, TCM compound prescriptions, and Chinese patent medicines via regulating the AMPK pathway. The review aims to clarify the mechanism and targets of TCM in the treatment of CHF by regulating the AMPK pathway and guide the clinical treatment and drug development for CHF.
6.Danhong Injection Regulates Ventricular Remodeling in Rat Model of Chronic Heart Failure with Heart-Blood Stasis Syndrome via p38 MAPK/NF-κB Signaling Pathway
Zizheng WU ; Xing CHEN ; Jiahao YE ; Lichong MENG ; Yao ZHANG ; Junyu ZHANG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):149-159
ObjectiveTo explore the mechanism of ventricular remodeling mediated by the p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway in the rat model of chronic heart failure (CHF) with heart-blood stasis syndrome, as well as the intervention effect of Danhong injection. MethodsIn vivo experiment: SPF-grade male SD rats were assigned via the random number table method into 4 groups: Sham operation, model, captopril (8.8 mg·kg-1), and Danhong injection (6.0 mL·kg-1). The model of CHF with heart-blood stasis syndrome was established by abdominal aortic constriction, and the sham operation group only underwent laparotomy without constriction. All the groups were treated continuously for 15 days. The tongue color of rats was observed. Echocardiography, hemorheology, heart mass index (HMI), and left ventricular mass index (LVMI) were measured. Hematoxylin-eosin (HE) staining and Masson staining were performed to observe the pathological and fibrotic changes of the myocardial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), interleukin-6 (IL-6), angiotensin Ⅱ (AngⅡ), tumor necrosis factor-α (TNF-α), and Creactive protein (CRP) in the serum, as well as the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the myocardial tissue. Western blot was used to quantify the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue. In vitro experiment: H9C2 cardiomyocytes were treated with 1×10-6 mol·L-1 AngⅡ to establish a model of myocardial hypertrophy. H9C2 cardiomyocytes were allocated into normal, model, inhibitor + Danhong injection, Danhong injection (20 mL·L-1), and inhibitor (SB203580, 5 μmol·L-1) groups. CCK-8 assay was used to detect the viability of H9C2 cardiomyocytes. Rhodamine-labeled phalloidin staining was used to reveal the area of cardiomyocytes. Real-time PCR was performed to determine the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Western blot was used to assess the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65. ResultsIn vivo experiment: Compared with the sham operation group, the model group showed purplish-dark tongue with decreased R, G, B values of the tongue surface (P<0.01), increased whole blood viscosity (at low, medium, and high shear rates) (P<0.01), decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (P<0.01), increased left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), and left ventricular posterior wall thickness at end-diastole (LVPWd) (P<0.01), raised LVMI and HMI (P<0.01), and elevated levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). The HE and Masson staining of the myocardial tissue showed compensatory myocardial hypertrophy, fibrosis, and massive inflammatory cell infiltration in the model group. Additionally, the model group presented up-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). Compared with the model group, each administration group showed increased R, G, B values of the tongue surface (P<0.05, P<0.01), decreased whole blood viscosity (at low, medium, and high shear rates) (P<0.05, P<0.01), increased LVEF and LVFS (P<0.01), decreased LVIDd, LVIDs, and LVPWd (P<0.05, P<0.01), declined LVMI and HMI (P<0.05, P<0.01), and lowered levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). HE and Masson staining showed alleviated compensatory myocardial hypertrophy, reduced fibrosis, and decreased expression of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). In vitro experiment: When the concentration of Danhong injection reached 20 mL·L-1, the survival rate of H9C2 cardiomyocytes was the highest (P<0.01). Compared with the normal group, the model group showed up-regulated mRNA levels of ANP and BNP (P<0.01), increased relative cell surface area (P<0.01), and raised protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.01). Compared with the model group, each administration group showed down-regulated mRNA levels of ANP and BNP (P<0.01), reduced relative cell surface area (P<0.05, P<0.01), and down-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionDanhong injection can regulate ventricular remodeling through the p38 MAPK/NF-κB pathway, thereby exerting a protective effect on the rat model of CHF with heart-blood stasis syndrome.
7.Exploration of Traditional Chinese Medicine Syndrome Characteristics in A Heart Failure Model Induced by Coronary Artery Ligation Based on Method of Syndrome Identification by Prescription Efficacy
Xiaoqian LIAO ; Peiyao LI ; Xingyu FAN ; Zhenyu ZHAO ; Junyu ZHANG ; Yuehang XU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):169-177
Chronic heart failure (CHF) is a major global public health problem, and myocardial infarction is one of its main causes. The mouse model of heart failure induced by coronary artery ligation is widely used in the study of CHF, while the TCM syndrome attributes of this model have not yet been clarified. According to the theory of correspondence between prescriptions and syndromes, the method of syndrome identification by prescription efficacy is an important means of current syndrome research of animal models. This method deduces the syndrome characteristics of animal models through prescription efficacy. Taking the four basic syndrome elements of Qi, blood, Yin and Yang as the classification reference, this study used coronary artery ligation to construct a mouse model of CHF and treated the model with four representative TCM injections with the effects of replenishing Qi, warming Yang, nourishing Yin, and activating blood and enalapril. Echocardiography, tongue color parameters, histopathology, serum N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin Ⅰ (cTnⅠ) levels, and systematically explored the TCM syndrome attributes of this model. The results showed that the coronary ligation model presented an obvious cardiac function decline, myocardial fibrosis, infarct size expansion, and purple dark tongue, which were consistent with the basic syndrome characteristics of blood stasis in CHF. Danhong injection had significant effects of improving the cardiac function, alleviating myocardial fibrosis, and reducing serum NT-proBNP and cTnⅠ levels. Huangqi Injection and Shenfu injection can improve the cardiac function and tongue color parameters, with limited effects. The effect of Shenmai injection group was not obvious. This study verifies that the established model conforms to blood stasis syndrome through the method of syndrome identification by prescription efficacy, which provides an experimental basis for the study of TCM syndrome mechanism of CHF.
8.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
9.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
10.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.

Result Analysis
Print
Save
E-mail