1.Effects of microstructured bone implant material surfaces on osteogenic function of MC3T3-E1 osteoblasts
Liping HUANG ; Hui LI ; Xinge WANG ; Rui WANG ; Bei CHANG ; Shiting LI ; Xiaorong LAN ; Guangwen LI
Chinese Journal of Tissue Engineering Research 2025;29(10):1990-1996
BACKGROUND:The micro/nanostructured gradient biomimetic surface of implant materials can simulate the structure of the extracellular environment in human bone tissue,thereby achieving perfect bone integration function.However,further research is needed on the mechanisms by which the surface microstructure of bone implant materials regulates cell function and promotes osteogenesis. OBJECTIVE:To analyze the effect of titanium sheet microstructure surface on osteogenic differentiation of MC3T3-E1 osteoblasts. METHODS:(1)At a constant voltage of 5 V or 20 V,nanotube arrays of different diameters were prepared on the surface of titanium sheets by acid etching and anodic oxidation techniques,and were recorded as group R5 and group R20,respectively.The surface morphology,roughness,and hydrophilicity of pure titanium sheet(without acid etching or anodizing treatment)were measured in group R5 and group R20.(2)MC3T3-E1 osteoblasts of logarithmic growth stage were inoculated on the surface of pure titanium sheets,R5 group and R20 group respectively.After 24 hours of osteogenic induction culture,the expression of mechanical sensitive channel protein 1 was analyzed by RT-PCR and immunofluorescence staining.Osteoblast inducible base with or without the mechanosensitive channel protein 1 activator Yada1 was added,and alkaline phosphatase staining was performed after 7 days of culture.Alizarin red staining was performed after 14 days of culture. RESULTS AND CONCLUSION:(1)The surface of pure titanium sheets was smooth under scanning electron microscope.Relatively uniform and orderly nanotube arrays with average diameters of about 30 nm and 100 nm were observed on the surface of titanium sheets of groups R5 and R20,respectively.The results of scanning electron microscope were further verified by atomic force microscopy.The surface roughness of titanium sheet of group R5 was higher than that of pure titanium(P<0.05),and the water contact angle was lower than that of pure titanium(P<0.05).The surface roughness of titanium sheet in group R20 was higher than that in group R5(P<0.05),and the water contact angle was lower than that in group R5(P<0.05).(2)RT-PCR and immunofluorescence staining showed that the expression of mechanosensitive channel protein 1 in group R5 was higher than that in pure titanium group(P<0.05),and the expression of mechanosensitive channel protein 1 in group R20 was higher than that in group R5(P<0.05).Under the osteogenic induction,compared with the condition without Yada1,there were no significant changes in the activity of alkaline phosphatase and the deposition of calcified nodules in pure titanium group after Yada1 addition,while the activity of alkaline phosphatase and the deposition of calcified nodules in groups R5 and R20 after Yada1 addition were significantly increased(P<0.05).With or without Yada1,the alkaline phosphatase activity and calcified nodule deposition in group R5 were higher than those in pure titanium group(P<0.05),and the alkaline phosphatase activity and calcified nodule deposition in group R20 were higher than those in group R5(P<0.05).(3)The results show that the surface microstructure of titanium sheet can promote the osteogenic differentiation of osteoblast MC3T3-E1 by activating mechanosensitive channel protein 1.
2.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
3.Research and prospect of integrated traditional Chinese and western medicine in treatment of bronchiectasis.
Qing MIAO ; Zi YANG ; Bo XU ; Sha-Sha YUAN ; Yu-Chen WEI ; Jin-Zhi ZHANG ; Rui LI ; Chang-Zheng FAN
China Journal of Chinese Materia Medica 2025;50(13):3692-3698
Bronchiectasis(BE) is the third major chronic airway disease, and its incidence rate shows a continuously increasing trend. Bronchiectasis is a highly heterogeneous chronic airway disease. Due to structural alterations, airflow limitation, and mucus hypersecretion, clinical treatment faces many challenges. Particularly, problems including Pseudomonas aeruginosa-dominant drug-resistant bacterial colonization, recurrent infections, airway mucus hypersecretion, and impaired lung function are the most urgent, requiring long-term and personalized treatment and management integrating traditional Chinese and western medicine to prevent the recurrence and continuous progression of the disease. In recent years, both traditional Chinese medicine and western medicine have made certain progress in pathogenesis theories, clinical studies, and basic research regarding the therapeutic challenges of bronchiectasis. Therefore, this paper summarized relevant research from the past 10 years and explored future directions and potential advantages of integrated traditional Chinese and western medicine treatment, providing references for optimizing the clinical management strategies for bronchiectasis.
Bronchiectasis/drug therapy*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional/methods*
;
Animals
4.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
5.Early prediction and warning of MODS following major trauma via identification of cytokine storm: A prospective cohort study.
Panpan CHANG ; Rui LI ; Jiahe WEN ; Guanjun LIU ; Feifei JIN ; Yongpei YU ; Yongzheng LI ; Guang ZHANG ; Tianbing WANG
Chinese Journal of Traumatology 2025;28(6):391-398
PURPOSE:
Early mortality in major trauma has decreased, but MODS remains a leading cause of poor outcomes, driven by trauma-induced cytokine storms that exacerbate injuries and organ damage.
METHODS:
This prospective cohort study included 79 major trauma patients (ISS >15) treated in the National Center for Trauma Medicine, Peking University People's Hospital, from September 1, 2021, to July 31, 2023. Patients (1) with ISS >15 (according to AIS 2015), (2) aged 15-80 years, (3) admitted within 6 h of injury, (4) having no prior treatment before admission, were included. Exclusion criteria were (1) GCS score <9 or AIS score ≥3 for TBI, (2) confirmed infection, infectious disease, or high infection risk, (3) pregnancy, (4) severe primary diseases affecting survival, (5) recent use of immunosuppressive or cytotoxic drugs within the past 6 months, (6) psychiatric patients, (7) participation in other clinical trials within the past 30 days, (8) patients with incomplete data or missing blood samples. Admission serum inflammatory cytokines and pathophysiological data were analyzed to develop machine learning models predicting MODS within 7 days. LR, DR, RF, SVM, NB, and XGBoost were evaluated based on the area under the AUROC. The SHAP method was used to interpret results.
RESULTS:
This study enrolled 79 patients with major trauma, and the median (Q1, Q3) age was 51 (35, 59) years (52 males, 65.8%). The inflammatory cytokine data were collected for all participants. Among these patients, 35 (44.3%) developed MODS, and 44 (55.7%) did not. Additionally, 2 patients (2.5%) from the MODS group succumbed. The logistic regression model showed strong performance in predicting MODS. Ten key cytokines, IL-18, Eotaxin, MCP-4, IP-10, CXCL12, MIP-3α, MCP-1, IL-1RA, Cystatin C, and MRP8/14 were identified as critical to the trauma-induced cytokine storm and MODS development. Early elevation of these cytokines achieved high predictive accuracy, with an AUROC of 0.887 (95% CI 0.813-0.976).
CONCLUSION
Trauma-induced cytokine storms are strongly associated with MODS. Early identification of inflammatory cytokine changes enables better prediction and timely interventions to improve outcomes.
Humans
;
Prospective Studies
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Cytokine Release Syndrome/etiology*
;
Adolescent
;
Young Adult
;
Aged, 80 and over
;
Wounds and Injuries/complications*
;
Cytokines/blood*
;
Multiple Organ Failure/diagnosis*
;
Machine Learning
6.Clinical Features, Prognostic Analysis and Predictive Model Construction of Central Nervous System Invasion in Peripheral T-Cell Lymphoma.
Ya-Ting MA ; Yan-Fang CHEN ; Zhi-Yuan ZHOU ; Lei ZHANG ; Xin LI ; Xin-Hua WANG ; Xiao-Rui FU ; Zhen-Chang SUN ; Yu CHANG ; Fei-Fei NAN ; Ling LI ; Ming-Zhi ZHANG
Journal of Experimental Hematology 2025;33(3):760-768
OBJECTIVE:
To investigate the clinical features and prognosis of central nervous system (CNS) invasion in peripheral T-cell lymphoma (PTCL) and construct a risk prediction model for CNS invasion.
METHODS:
Clinical data of 395 patients with PTCL diagnosed and treated in the First Affiliated Hospital of Zhengzhou University from 1st January 2013 to 31st December 2022 were analyzed retrospectively.
RESULTS:
The median follow-up time of 395 PTCL patients was 24(1-143) months. There were 13 patients diagnosed CNS invasion, and the incidence was 3.3%. The risk of CNS invasion varied according to pathological subtype. The incidence of CNS invasion in patients with anaplastic large cell lymphoma (ALCL) was significantly higher than in patients with angioimmunoblastic T-cell lymphoma (AITL) (P <0.05). The median overall survival was significantly shorter in patients with CNS invasion than in those without CNS involvement, with a median survival time of 2.4(0.6-127) months after diagnosis of CNS invasion. The results of univariate and multivariate analysis showed that more than 1 extranodal involvement (HR=4.486, 95%CI : 1.166-17.264, P =0.029), ALCL subtype (HR=9.022, 95%CI : 2.289-35.557, P =0.002) and ECOG PS >1 (HR=15.890, 95%CI : 4.409-57.262, P <0.001) were independent risk factors for CNS invasion in PTCL patients. Each of these risk factors was assigned a value of 1 point and a new prediction model was constructed. It could stratify the patients into three distinct groups: low-risk group (0-1 point), intermediate-risk group (2 points) and high-risk group (3 points). The 1-year cumulative incidence of CNS invasion in the high-risk group was as high as 50.0%. Further evaluation of the model showed good discrimination and accuracy, and the consistency index was 0.913 (95%CI : 0.843-0.984).
CONCLUSION
The new model shows a precise risk assessment for CNS invasion prediction, while its specificity and sensitivity need further data validation.
Humans
;
Lymphoma, T-Cell, Peripheral/pathology*
;
Prognosis
;
Retrospective Studies
;
Central Nervous System Neoplasms/pathology*
;
Neoplasm Invasiveness
;
Male
;
Female
;
Central Nervous System/pathology*
;
Middle Aged
;
Adult
7.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
8.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
9.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
10.Mechanistic insights into honey-boiled detoxification of ChuanWu: A study on alkaloid transformation and supramolecular aggregation.
Yu ZHENG ; Nina WEI ; Chang LU ; Weidong LI ; Xiaobin JIA ; Linwei CHEN ; Rui CHEN ; Zhipeng CHEN
Journal of Pharmaceutical Analysis 2025;15(9):101205-101205
ChuanWu (CW), the dried mother root of Aconitum carmichaelii Debx., is a well-known traditional Chinese medicine (TCM) recognized for its potent efficacy but inherent toxicity, primarily due to its alkaloid content. Traditional and modern detoxification methods for CW include proper processing, rational compatibility, and specialized decoction techniques, among which honey-boiled CW is particularly distinctive. However, research on the detoxification mechanism of honey-boiled CW remains limited. This study investigated this mechanism by analyzing alkaloid transformation and supramolecular aggregation. Honey-boiled and water-boiled CW preparations were compared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to analyze CW alkaloids, specifically diester alkaloids (DDAs), monoester alkaloids (MDAs), and non-esterified diterpenoid alkaloids (NDAs). Transmission electron microscopy was employed to observe and identify supramolecular aggregates in the honey-boiled CW decoction. In vivo absorption of water-boiled, honey-boiled, and NADES-boiled CW was compared. Median lethal dose (LD50) tests assessed toxicity, including hepatotoxicity and nephrotoxicity. In vitro experiments evaluated the safety, anti-inflammatory, and analgesic effects of CW-medicated serum on RAW264.7 cells, with in vivo validation in mice. Results showed that honey promoted the conversion of highly toxic DDAs to less toxic MDAs and prevented MDAs from hydrolyzing into NDAs. Honey-boiled CW formed approximately 250 nm supramolecular aggregates that encapsulated MDAs, inhibiting their conversion to NDAs. These encapsulated MDAs acted as a stable delivery system with higher bioavailability than free benzoylmesaconine. Subsequent mouse experiments confirmed that honey-boiled CW significantly increased the LD50 of CW while reducing hepatotoxicity and nephrotoxicity. Additionally, honey-boiled CW significantly improved cell safety and enhanced anti-inflammatory and analgesic effects. Our findings reveal that honey-boiled CW exhibits a potent detoxification mechanism by influencing alkaloid transformation and facilitating the formation of supramolecular aggregates. This study lays the groundwork for developing detoxification or synergistic strategies within honey-boiled TCM.

Result Analysis
Print
Save
E-mail