1.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile.
2.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
3.A strategy to reduce unnecessary prostate biopsies in patients with tPSA >10 ng ml -1 and PI-RADS 1-3.
Qi-Fei DONG ; Yi-Xun LIU ; Yu-Han CHEN ; Yi-Fan MA ; Tao ZHOU ; Xue-Feng FAN ; Xiang YU ; Chang-Ming WANG ; Jun XIAO
Asian Journal of Andrology 2025;27(4):531-536
We propose a strategy to reduce unnecessary prostate biopsies in Chinese patients with total prostate-specific antigen (tPSA) >10 ng ml -1 and Prostate Imaging Reporting and Data System (PI-RADS) scores between 1 and 3. Clinical data derived from 517 patients of The First Affiliated Hospital of USTC (Hefei, China) from January 2020 to December 2023 who met the screening criteria for the study were retrospectively collected. Independent predictors were identified via univariate and multivariate logistic regression analysis. The diagnostic capacity of clinical variables was evaluated using the receiver operating characteristic (ROC) curves and area under the curve (AUC). A prostate biopsy strategy was developed via risk stratification. Of the 517 patients, 17/348 (4.9%) with PI-RADS 1-2 were diagnosed with clinically significant prostate cancer (csPCa), and 27/169 (16.0%) patients with PI-RADS 3 were diagnosed with csPCa. The appropriate prostate-specific antigen density (PSAD) cut-off values were 0.45 ng ml -2 for PI-RADS 1-2 patients and 0.3 ng ml -2 for PI-RADS 3 patients. The appropriate prostate volume (PV) cut-off values were 40 ml for PI-RADS 1-2 patients and 50 ml for PI-RADS 3 patients. The prostate biopsy strategy based on PSAD and PV developed in this study can reduce unnecessary prostate biopsies in patients with tPSA >10 ng ml -1 and PI-RADS 1-3. In the study, 66.5% (344/517) patients did not need to undergo prostate biopsy, at the expense of missing only 1.7% (6/344) patients with csPCa.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Prostate-Specific Antigen/blood*
;
Aged
;
Middle Aged
;
Retrospective Studies
;
Prostate/diagnostic imaging*
;
Unnecessary Procedures/statistics & numerical data*
;
Biopsy/statistics & numerical data*
;
China
;
ROC Curve
4.Cognitive function disparities among atrial fibrillation patients with varying comorbidities.
Mei-Qi ZHAO ; Ting SHEN ; Man-Lin ZHAO ; Jia-Xin LIU ; Mei-Lin XU ; Xin LI ; Liu HE ; Yu KONG ; Chang-Sheng MA
Journal of Geriatric Cardiology 2025;22(10):859-870
BACKGROUND:
Mild cognitive impairment (MCI) is common in atrial fibrillation (AF) patients and may develop earlier in those with multiple cardiovascular comorbidities, potentially impairing self-management and treatment adherence. This study aimed to characterize the prevalence and profile of MCI in AF patients, examine its associations with cardiovascular comorbidities, and assess how these comorbidities influence specific cognitive domains.
METHODS:
This cross-sectional study analyzed data from AF patients who underwent cognitive assessment between 2017 and 2021. Cognitive status was categorized as MCI or non-MCI based on the Montreal Cognitive Assessment. Associations between comorbidities and MCI were assessed by logistic regression, and cognitive domains were compared using the Mann-Whitney U test.
RESULTS:
Of 4136 AF patients (mean age: 64.7 ± 9.4 years, 64.7% male), 33.5% of patients had MCI. Among the AF patients, 31.2% of patients had coronary artery disease, 20.1% of patients had heart failure, and 18.1% of patients had hypertension. 88.7% of patients had left atrial enlargement, and 11.0% of patients had reduced left ventricular ejection fraction. Independent factors associated with higher MCI prevalence included older age (OR = 1.04, 95% CI: 1.03-1.05, P < 0.001), lower education level (OR = 1.51, 95% CI: 1.31-1.73, P < 0.001), hypertension (OR = 1.28, 95% CI: 1.07-1.52, P = 0.001), heart failure (OR = 1.24, 95% CI: 1.04-1.48, P = 0.020), and lower left ventricular ejection fraction (OR = 1.43, 95% CI: 1.04-1.98, P = 0.028). A higher CHA2DS2-VASc score (OR = 1.27, 95% CI: 1.22-1.33, P < 0.001; ≥ 2 points vs. < 2 points), and greater atherosclerotic cardiovascular disease burden (OR = 1.45, 95% CI: 1.02-2.08, P = 0.040; 2 types vs. 0 type) were linked to increased MCI risk. These above factors influenced various cognitive domains.
CONCLUSIONS
MCI is common in AF and closely associated with cardiovascular multimorbidity. Patients with multiple comorbidities are at higher risk, highlighting the importance of routine cognitive assessment to support self-management and integrated care.
5.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
6.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].
7.Synaptic Vesicle Glycoprotein 2A Slows down Amyloidogenic Processing of Amyloid Precursor Protein via Regulating Its Intracellular Trafficking.
Qian ZHANG ; Xiao Ling WANG ; Yu Li HOU ; Jing Jing ZHANG ; Cong Cong LIU ; Xiao Min ZHANG ; Ya Qi WANG ; Yu Jian FAN ; Jun Ting LIU ; Jing LIU ; Qiao SONG ; Pei Chang WANG
Biomedical and Environmental Sciences 2025;38(5):607-624
OBJECTIVE:
To reveal the effects and potential mechanisms by which synaptic vesicle glycoprotein 2A (SV2A) influences the distribution of amyloid precursor protein (APP) in the trans-Golgi network (TGN), endolysosomal system, and cell membranes and to reveal the effects of SV2A on APP amyloid degradation.
METHODS:
Colocalization analysis of APP with specific tagged proteins in the TGN, ensolysosomal system, and cell membrane was performed to explore the effects of SV2A on the intracellular transport of APP. APP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expressions, and APP cleavage products levels were investigated to observe the effects of SV2A on APP amyloidogenic processing.
RESULTS:
APP localization was reduced in the TGN, early endosomes, late endosomes, and lysosomes, whereas it was increased in the recycling endosomes and cell membrane of SV2A-overexpressed neurons. Moreover, Arl5b (ADP-ribosylation factor 5b), a protein responsible for transporting APP from the TGN to early endosomes, was upregulated by SV2A. SV2A overexpression also decreased APP transport from the cell membrane to early endosomes by downregulating APP endocytosis. In addition, products of APP amyloid degradation, including sAPPβ, Aβ 1-42, and Aβ 1-40, were decreased in SV2A-overexpressed cells.
CONCLUSION
These results demonstrated that SV2A promotes APP transport from the TGN to early endosomes by upregulating Arl5b and promoting APP transport from early endosomes to recycling endosomes-cell membrane pathway, which slows APP amyloid degradation.
Amyloid beta-Protein Precursor/genetics*
;
Membrane Glycoproteins/genetics*
;
Animals
;
Protein Transport
;
Nerve Tissue Proteins/genetics*
;
Humans
;
Mice
;
Endosomes/metabolism*
;
trans-Golgi Network/metabolism*
8.Mechanism of Mitochondrial Quality Control in Ovarian Aging and Intervention of Traditional Chinese Medicine: A Review
Fei YAN ; Yanfeng LIU ; Qi ZHAO ; Xingtong LIU ; Ying LI ; Chang SHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):291-298
Ovarian aging is a reproductive endocrine disease caused by a variety of factors leading to a gradual decline in ovarian function until ovarian failure, which seriously affects women's physical and reproductive health and is a major factor leading to female infertility. Mitochondria, the energy metabolism centers of cells, are critical for ovarian functions. Their structural and functional abnormalities are key pathological factors leading to the declined ovarian function. Mitochondrial quality control is an important endogenous regulatory mechanism for the maintenance of mitochondrial homeostasis and the improvement of mitochondrial functions. Abundant studies have shown that the dysregulation of mitochondrial quality control, characterized by mitochondrial oxidative damage, abnormal mitochondrial biogenesis, abnormal mitochondrial dynamics, abnormal mitochondrial autophagy, and dysregulated calcium homeostasis, is closely associated with the occurrence of ovarian hypofunction. Traditional Chinese medicine (TCM) is a treasure of China's medicine, demonstrating remarkable efficacy in the clinical treatment of ovarian aging-related diseases. In recent years, research progress has been achieved in the TCM treatment of ovarian aging by regulating mitochondrial quality control disorders in a multi-target and multi-pathway manner. However, systematic research remains to be carried out regarding the research progress in this field. Therefore, this article reviews the research progress in the TCM treatment of ovarian aging based on mitochondrial quality control, with a view to providing a theoretical basis for studying the clinical efficacy of TCM in the treatment of ovarian aging and a new strategy for the in-depth research on the prevention and treatment of ovarian aging by TCM.
9.Screening and Functional Analysis of BACE1 Interacting Proteins in Alzheimer’s Disease
Cong-Cong LIU ; Ya-Qi WANG ; Pei-Chang WANG
Progress in Biochemistry and Biophysics 2024;51(8):1904-1919
Objectiveβ‑Site APP cleaving enzyme 1 (BACE1) is a rate-limiting enzyme involved in the formation of amyloid plaques in Alzheimer’s disease (AD), and its expression and activity play a crucial role in the development of AD. The interacting protein of BACE1 can directly or indirectly regulate BACE1 in the transcription, translation, modification, intracellular transport and other links of BACE1 by directly binding, indirectly binding, and participating in various cell signal transduction pathways, so as to participate in the occurrence of AD and the process of disease. This study aimed to screen and validate the interacting proteins of BACE1, providing new insights into the mechanisms of amyloid plaque formation. MethodsCo-immunoprecipitation (Co-IP) and mass spectrometry (MS) were used to enrich and identify BACE1 interacting proteins in the hippocampus of wild type (WT) mice and AD model mice. For candidate BACE1 interacting proteins, GO enrichment analysis and KEGG pathway enrichment analysis were used to explore the subcellular localization, molecular function, participating biological processes and participating signaling pathways of BACE1 interacting proteins. The protein-protein interaction (PPI) network of BACE1 was further constructed to explore the potential proteins interacting with BACE1. By searching the mouse genomeinformation (MGI) website and NCBI database, the more reliable proteins among the potential BACE1 interacting proteins were screened. Co-IP assay and immunofluorescence confocal technology were used to preliminarily verify the interaction between the proteins, and the changes in protein expression levels of the interacting proteins in AD cell models were explored. ResultsA total of 614 differentially expressed proteins interacting with BACE1 were identified in AD group. GO enrichment analysis showed that the BACE1 interacting proteins in the AD group were mainly located in membrane organelles such as Golgi apparatus, endoplasmic reticulum, endosome, lysosome and vesicles, which had molecular functions such as ion channel regulation, protein kinase activity, transcription factor binding and passive transmembrane transporter activity. It is mainly involved in the biological processes of immune response regulation cell surface receptor signaling pathway, targeting Golgi vesicles transport, circadian rhythm regulation, Purkinje cell layer development, etc. KEGG analysis showed that BACE1 interacting proteins in AD were mainly involved in the PI3K-Akt signaling pathway, mTOR signaling pathway and other neurodegenerative disease-related pathways. The PPI network of BACE1 showed that a total of 12 proteins were identified as high confidence binding proteins, including PRNP, APOE, SYP, NSF, NUMB, SNAP91, HSP90aa1, UCHL1, BIN1, SNX27, Rheb, Ap2m1, of which, NSF, NUMB, SNAP91, HSP90aa1 were newly identified candidate proteins. After further verification, we found that NSF not only interacts with BACE1, but also interacts with amyloid precursor protein (APP), the substrate of BACE1, and the expression level of NSF is up-regulated in the AD cell model constructed by Aβ42 induction. ConclusionBACE1 binding proteins participate in multiple AD-associated biological processes and signal pathways. NSF is a newly identified BACE1 binding protein that interacts with BACE1, and the protein expression level of NSF is up-regulated in the AD cell model. It is predicted that the interaction between NSF and BACE1 is involved in regulating the course of AD, providing a new target and direction for the study of the mechanism of AD.
10.Study on Biocompatibility of Graphene Quantum Dots With Macrophages in vitro
Qi LIU ; Hai-Yan XU ; Yu-Xuan SU ; Kai-Hong ZHOU ; Chang-Yan LI
Progress in Biochemistry and Biophysics 2024;51(11):2971-2982
ObjectiveGQDs has become a superstar among zero-dimensional carbon-based materials. As one of the most abundant and important biological elements, its unique optical properties, high dispersion and biocompatibility have attracted extensive attention from scientists. This paper aims to investigate the effect of GQDs on cell viability, apoptosis and inflammatory factor expression in RAW264.7 macrophages and evaluate cell imaging capability of GQDs in vitro, which could provide theoretical basis for the safe application of GQDs in biomedical field. MethodsGraphene oxide was prepared by modified Hummer’s method. H2O2 and W18O49 interacted with each other under hydrothermal conditions to produce hydroxyl radicals, which can cut graphene oxide into GQDs using a top-down approach. The microstructure of GQDs was analyzed in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy and Fourier infrared transform. The biocompatibility of GQDs on macrophage was evaluated by CCK-8 and dead/alive staining. Flow cytometry results showed the apoptosis of RAW264.7 macrophages induced by GQDs. mRNA expression of inflammatory factors was evaluated byRT-qPCR. Cell imaging was exhibited by laser scanning confocal. ResultsHydroxyl radicals are produced by H2O2 and W18O49 under hydrothermal conditions, which contribute to cut graphene oxide into 3-5 nm GQDs in one step. The quantum yield of this method is 43%. Fluorescence lifetime of these blue GQDs is 1.67 ns. The Zigzag-type site and defect state of the triplet carbene radical lead to the excitation wavelength dependence of GQDs, and the optimal excitation and emission wavelengths are 330 nm and 400 nm, respectively. The boundary effect and amphiphilicity of quantum dots make GQDs possess abundant functional groups, vacancy defects and high dispersion, which results in GQDs exhibits good water solubility. RAW264.7 macrophages are incubated with different concentration in DEME medium for 24 h, 48 h and 72 h to evaluate cell. The survival rate of RAW264.7 cells is significantly dependent on the concentration and time of GQDs. CCK-8 and dead/alive staining show that GQDs have high biocompatibility. The effect of 200 mg/L GQDs on apoptosis of RAW264.7 cells is revealed by the scatter plot of bivariate flow cytometry. Under the stimulation of LPS+INF‑γ, the expression of TNF-α was increased in RAW264.7 cells, which co-acted with other cytokines to participate in the immune response of RAW264.7 cells in vitro, and mediated the production of IL-1β inflammatory factor in RAW264.7 cells, thereby inducing apoptosis of RAW264.7 cells. The results of RT-qPCR showed that GQDs can inhibit the growth of RAW264.7 cells in vitro, and stimulate them to increase TNF-α expression in RAW264.7 cells, which make cell membrane rupture and produce IL-1β inflammatory factors to induce cell apoptosis. The high biocompatibility of GQDs is attributed to the rich oxygen-containing functional groups (―COOH, ―OH, and C

Result Analysis
Print
Save
E-mail