1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
7.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.
8.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.
9.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.
10.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.

Result Analysis
Print
Save
E-mail