1.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
2.Effects of microstructured bone implant material surfaces on osteogenic function of MC3T3-E1 osteoblasts
Liping HUANG ; Hui LI ; Xinge WANG ; Rui WANG ; Bei CHANG ; Shiting LI ; Xiaorong LAN ; Guangwen LI
Chinese Journal of Tissue Engineering Research 2025;29(10):1990-1996
BACKGROUND:The micro/nanostructured gradient biomimetic surface of implant materials can simulate the structure of the extracellular environment in human bone tissue,thereby achieving perfect bone integration function.However,further research is needed on the mechanisms by which the surface microstructure of bone implant materials regulates cell function and promotes osteogenesis. OBJECTIVE:To analyze the effect of titanium sheet microstructure surface on osteogenic differentiation of MC3T3-E1 osteoblasts. METHODS:(1)At a constant voltage of 5 V or 20 V,nanotube arrays of different diameters were prepared on the surface of titanium sheets by acid etching and anodic oxidation techniques,and were recorded as group R5 and group R20,respectively.The surface morphology,roughness,and hydrophilicity of pure titanium sheet(without acid etching or anodizing treatment)were measured in group R5 and group R20.(2)MC3T3-E1 osteoblasts of logarithmic growth stage were inoculated on the surface of pure titanium sheets,R5 group and R20 group respectively.After 24 hours of osteogenic induction culture,the expression of mechanical sensitive channel protein 1 was analyzed by RT-PCR and immunofluorescence staining.Osteoblast inducible base with or without the mechanosensitive channel protein 1 activator Yada1 was added,and alkaline phosphatase staining was performed after 7 days of culture.Alizarin red staining was performed after 14 days of culture. RESULTS AND CONCLUSION:(1)The surface of pure titanium sheets was smooth under scanning electron microscope.Relatively uniform and orderly nanotube arrays with average diameters of about 30 nm and 100 nm were observed on the surface of titanium sheets of groups R5 and R20,respectively.The results of scanning electron microscope were further verified by atomic force microscopy.The surface roughness of titanium sheet of group R5 was higher than that of pure titanium(P<0.05),and the water contact angle was lower than that of pure titanium(P<0.05).The surface roughness of titanium sheet in group R20 was higher than that in group R5(P<0.05),and the water contact angle was lower than that in group R5(P<0.05).(2)RT-PCR and immunofluorescence staining showed that the expression of mechanosensitive channel protein 1 in group R5 was higher than that in pure titanium group(P<0.05),and the expression of mechanosensitive channel protein 1 in group R20 was higher than that in group R5(P<0.05).Under the osteogenic induction,compared with the condition without Yada1,there were no significant changes in the activity of alkaline phosphatase and the deposition of calcified nodules in pure titanium group after Yada1 addition,while the activity of alkaline phosphatase and the deposition of calcified nodules in groups R5 and R20 after Yada1 addition were significantly increased(P<0.05).With or without Yada1,the alkaline phosphatase activity and calcified nodule deposition in group R5 were higher than those in pure titanium group(P<0.05),and the alkaline phosphatase activity and calcified nodule deposition in group R20 were higher than those in group R5(P<0.05).(3)The results show that the surface microstructure of titanium sheet can promote the osteogenic differentiation of osteoblast MC3T3-E1 by activating mechanosensitive channel protein 1.
3.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
4.Research progress in chemical constituents and pharmacological activities of Abelmoschi Corolla and prediction of its quality markers.
Shi-Han GUAN ; Chang LIU ; Xiao-Tong YAN ; Jin-Wei HAN ; Feng-Ting YIN ; Hui SUN ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(4):908-921
Abelmoschi Corolla, the dried corolla of Abelmoschus manihot, has anti-inflammatory, antioxidant, and anti-fibrosis activities. Its chemical constituents mainly include flavonoids, organic acids, steroids, and polysaccharides. This study reviewed the research progress in the chemical constituents and pharmacological activities of Abelmoschi Corolla in recent 20 years. According to the concept of quality marker(Q-marker), the Q-markers of Abelmoschi Corolla were predicted from plant phylogeny, chemical constituent specificity, traditional efficacy, chemical constituent measurability, and absorbed constituents. The primary Q-markers for Abelmoschi Corolla were anticipated to include quercetin-3'-O-β-D-glucopyranoside, gossypetin-8-O-β-D-glucuronide, isoquercetin, myricetin,quercetin, and hyperoside, with the aim of providing reference data for improving the quality evaluation system of Abelmoschi Corolla.
Abelmoschus/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Flowers/chemistry*
;
Humans
;
Animals
;
Quality Control
;
Flavonoids/chemistry*
5.Research advances in mechanism of salvianolic acid B in treating coronary heart disease.
Hong-Ming CAO ; Hui SUN ; Chang LIU ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(6):1449-1457
Coronary heart disease is a cardiovascular disease that affects coronary arteries. It presents high incidence and high mortality worldwide, bringing a serious threat to human health and quality of life. Salviae Miltiorrhizae Radix et Rhizoma derived from Salvia miltiorrhiza is widely used in the treatment of cardiovascular diseases, such as coronary heart disease. Salvianolic acid B is an active component in Salviae Miltiorrhizae Radix et Rhizoma extracts, and studies have shown that it has anti-inflammatory, antioxidant, apoptosis-and autophagy-regulating, anti-fibrosis, and metabolism-modulating effects. This article reviews the research progress regarding the therapeutic effect of salvianolic acid B on coronary heart disease in the recent decade. It elaborates on the role and mechanism of salvianolic acid B in treating coronary heart disease from multiple perspectives, such as the inhibition of thrombosis, improvement of blood circulation, reduction of myocardial cell injury, and inhibition of cardiac remodeling. This article provides a theoretical basis for the application of Chinese medicinal materials and TCM prescriptions containing salvianolic acid B in the treatment of coronary heart disease.
Humans
;
Benzofurans/administration & dosage*
;
Coronary Disease/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Salvia miltiorrhiza/chemistry*
;
Animals
;
Depsides
6.Oxocrebanine inhibits proliferation of hepatoma HepG2 cells by inducing apoptosis and autophagy.
Zheng-Wen WANG ; Cai-Yan PAN ; Chang-Long WEI ; Hui LIAO ; Xiao-Po ZHANG ; Cai-Yun ZHANG ; Lei YU
China Journal of Chinese Materia Medica 2025;50(6):1618-1625
The study investigated the specific mechanism by which oxocrebanine, the anti-hepatic cancer active ingredient in Stephania hainanensis, inhibits the proliferation of hepatic cancer cells. Firstly, methyl thiazolyl tetrazolium(MTT) assay, 5-bromodeoxyuridine(BrdU) labeling, and colony formation assay were employed to investigate whether oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells. Propidium iodide(PI) staining was used to observe the oxocrebanine-induced apoptosis of HepG2 and Hep3B2.1-7 cells. Western blot was employed to verify whether apoptotic effector proteins, such as cleaved cysteinyl aspartate-specific protease 3(c-caspase-3), poly(ADP-ribose) polymerase 1(PARP1), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), Bcl-2 homologous killer(Bak), and myeloid cell leukemia-1(Mcl-1) were involved in apoptosis. Secondly, HepG2 cells were simultaneously treated with oxocrebanine and the autophagy inhibitor 3-methyladenine(3-MA), and the changes in the autophagy marker LC3 and autophagy-related proteins [eukaryotic translation initiation factor 4E-binding protein 1(4EBP1), phosphorylated 4EBP1(p-4EBP1), 70-kDa ribosomal protein S6 kinase(P70S6K), and phosphorylated P70S6K(p-P70S6K)] were determined. The results of MTT assay, BrdU labeling, and colony formation assay showed that oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells in a dose-dependent manner. The results of flow cytometry suggested that the apoptosis rate of HepG2 and Hep3B2.1-7 cells increased after treatment with oxocrebanine. Western blot results showed that the protein levels of c-caspase-3, Bax, and Bak were up-regulated and those of PARP1, Bcl-2, and Mcl-1 were down-regulated in the HepG2 cells treated with oxocrebanine. The results indicated that oxocrebanine induced apoptosis, thereby inhibiting the proliferation of hepatic cancer cells. The inhibition of HepG2 cell proliferation by oxocrebanine may be related to the induction of protective autophagy in hepatocellular carcinoma cells. Oxocrebanine still promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, reduced the phosphorylation levels of 4EBP1 and P70S6K, which can be reversed by the autophagy inhibitor 3-MA. It is prompted that oxocrebanine can inhibit the proliferation of hepatic cancer cells by inducing autophagy. In conclusion, oxocrebanine inhibits the proliferation of hepatic cancer cells by inducing apoptosis and autophagy.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Caspase 3/genetics*
7.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
8.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
9.Establishment of tissue culture and rapid propagation system of Artemisia stolonifera.
Chu WANG ; Ya XU ; Yang XU ; Ye WANG ; Na-Na CHANG ; Lu-Qi HUANG ; Hui LI
China Journal of Chinese Materia Medica 2025;50(11):2994-3000
As a high-quality moxibustion material, Artemisia stolonifera has high economic value and research prospects. However, due to difficulties in seed germination, its wild germplasm resources are sparsely distributed in China. This study used young stem segments grown in the current year to investigate the effects of explant sterilization, different combinations and concentrations of plant growth regulators on the proliferation and rooting of adventitious shoots, with the aim of constructing an in vitro rapid propagation technology system for A. stolonifera. The results showed that the lowest contamination rate of 25.83% was achieved when sterilizing the stem segments by rinsing with running water for 30 min, soaking in 75% ethanol for 30 s, followed by a 5 min treatment with 0.1% HgCl_2, 10 min with 8% NaClO, and 10 min with 0.6% phytosaniline. There was no browning of the stem segments, and surface sterilization of the A. stolonifera stem segments was successfully achieved. In the induction culture phase, when the concentration of kinetin(KT) was 0.05 mg·L~(-1) and 6-benzylaminopurine(6-BA) was 0.05 mg·L~(-1), the adventitious shoot proliferation coefficient was 2.02, effectively promoting the proliferation and growth of A. stolonifera. In the rooting culture phase, 0.1 mg·L~(-1) 1-naphthaleneacetic acid(NAA) effectively induced A. stolonifera test-tube seedlings to root within a short period, achieving a rooting rate of 100%. The addition of a small amount of activated charcoal also promoted rooting and strengthened seedling growth. The survival rate of A. stolonifera seedlings transplanted into a substrate consisting of 90% nutrient soil and 10% perlite was 100%. This study established an efficient in vitro rapid propagation system for A. stolonifera, overcoming difficulties with seed germination, shortening the breeding cycle, and reducing production and planting costs. It provides technical support for the introduction, domestication, seedling propagation, germplasm conservation, and industrial development of A. stolonifera.
Artemisia/drug effects*
;
Tissue Culture Techniques/methods*
;
Plant Growth Regulators/pharmacology*
;
Plant Stems/drug effects*
;
Plant Shoots/drug effects*
10.Development of core outcome set for traditional Chinese medicine interventions in diabetic peripheral neuropathy.
Lu-Jie WANG ; Liang-Zhen YOU ; Chang CHANG ; Yu-Meng GENG ; Jin-Dong ZHAO ; Zhao-Hui FANG ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2025;50(14):4071-4080
This study developed a core outcome set(COS) for traditional Chinese medicine(TCM) interventions in diabetic peripheral neuropathy(DPN), standardizing evaluation metrics for TCM efficacy and providing a new framework for DPN treatment and management. A systematic search was conducted across databases, including CNKI, Wanfang, and PubMed, targeting clinical trial literature published between January 1, 2013, and January 1, 2023. The search focused on extracting outcome indicators and measurement tools used in TCM treatments for DPN. Retrospective data collection was performed from January 2018 to June 2023, involving 200 DPN patients hospitalized at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Additionally, semi-structured interviews were conducted with inpatients, outpatients, their families, and nursing staff to further refine and enhance the list of outcome indicators. After two rounds of Delphi questionnaire survey and consensus meeting, a consensus was reached. The study initially retrieved 3 421 publications, of which 170 met the inclusion criteria after review. These publications, combined with retrospective analysis and semi-structured interviews, supplemented the list of indicators. After two rounds of Delphi surveys, experts agreed on 24 indicators and 6 measurement tools. The final COS determined by expert consensus meeting included 5 domains and 13 outcome indicators: neurological function signs, quality of life, TCM syndrome score, nerve conduction velocity, current perception threshold test, fasting blood glucose, 2 h postprandial blood glucose, glycated hemoglobin, complete blood count, urinalysis, liver function test, kidney function test, and electrocardiogram.
Humans
;
Diabetic Neuropathies/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Retrospective Studies
;
Treatment Outcome
;
Male
;
Female

Result Analysis
Print
Save
E-mail