1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Analysis of Medication Patterns for Ancient Epidemic Treatment Based on Data Mining
Peipei JIN ; Tongxing WANG ; Liping CHANG ; Bin HOU ; Ningxin HAN ; Xiaoqi WANG ; Zhenhua JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):287-294
ObjectiveExploring the formula rules of commonly used traditional Chinese medicines(TCMs) for epidemic treatment from the Qin and Han dynasties to the Qing dynasty through data mining, providing reference for the prevention and control of contemporary epidemics. MethodsThe articles on epidemic treatment in the electronic database of Chinese Medical Code V5.0 were systematically searched, and the contents such as source, dynasty, author, diagnosis, formula name, therapeutic method and efficacy, and composition of medicines from each article that met the inclusion criteria were extracted. Then, an Excel standardized database was established, and Python programs were used for data mining to summarize the frequency of commonly used medicines and perform hierarchical cluster analysis, Pearson correlation analysis, and association rule analysis. ResultsA total of 1 595 formulas were included, involving 558 TCMs. The efficacy of these medicines could be classified into two categories, namely, expeling pathogenic factors and reinforcing healthy Qi. According to the frequency deconstruction analysis, high-frequency medicines were mainly detoxification, Fu-organ dredging, aromatization and promoting blood circulation, followed by the medicines with the effect of treating the lungs, such as clearing the lungs and resolving phlegm, clearing heat and purging the lungs, relieving cough and asthma, and purging the lungs and relieving asthma. And the proportions of acrid-warm herbs and acrid-cold herbs varied in different periods. Hierarchical clustering and correlation analysis both suggested TCMs for expeling pathogenic factors and reinforcing healthy Qi often formed stable combinations with high association degrees. Association rule analysis showed that the core acrid-warm herb was mainly Ephedrae Herba, and the core acrid-cold herb was mainly Forsythiae Fructus, resulting in the core formulas of Maxing Shigantang and Yinqiaosan. ConclusionThroughout history, the prevention and control of epidemics have been based on the principle of "preserving healthy Qi and avoiding toxic Qi", focusing on the treatment of the causes and characteristics of epidemics through detoxification, Fu-organ dredging, and aromatization, emphasizing the use of Rhei Radix et Rhizoma and other herbs to dredge Fu-organ, eliminate toxins and pathogens, and playing the role of actively intervene with symptomatic medication. And based on the external manifestations of the body's struggle between evil and righteousness, diagnose and treatment according to syndrome differentiation was performed.
3.Analysis of Medication Patterns for Ancient Epidemic Treatment Based on Data Mining
Peipei JIN ; Tongxing WANG ; Liping CHANG ; Bin HOU ; Ningxin HAN ; Xiaoqi WANG ; Zhenhua JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):287-294
ObjectiveExploring the formula rules of commonly used traditional Chinese medicines(TCMs) for epidemic treatment from the Qin and Han dynasties to the Qing dynasty through data mining, providing reference for the prevention and control of contemporary epidemics. MethodsThe articles on epidemic treatment in the electronic database of Chinese Medical Code V5.0 were systematically searched, and the contents such as source, dynasty, author, diagnosis, formula name, therapeutic method and efficacy, and composition of medicines from each article that met the inclusion criteria were extracted. Then, an Excel standardized database was established, and Python programs were used for data mining to summarize the frequency of commonly used medicines and perform hierarchical cluster analysis, Pearson correlation analysis, and association rule analysis. ResultsA total of 1 595 formulas were included, involving 558 TCMs. The efficacy of these medicines could be classified into two categories, namely, expeling pathogenic factors and reinforcing healthy Qi. According to the frequency deconstruction analysis, high-frequency medicines were mainly detoxification, Fu-organ dredging, aromatization and promoting blood circulation, followed by the medicines with the effect of treating the lungs, such as clearing the lungs and resolving phlegm, clearing heat and purging the lungs, relieving cough and asthma, and purging the lungs and relieving asthma. And the proportions of acrid-warm herbs and acrid-cold herbs varied in different periods. Hierarchical clustering and correlation analysis both suggested TCMs for expeling pathogenic factors and reinforcing healthy Qi often formed stable combinations with high association degrees. Association rule analysis showed that the core acrid-warm herb was mainly Ephedrae Herba, and the core acrid-cold herb was mainly Forsythiae Fructus, resulting in the core formulas of Maxing Shigantang and Yinqiaosan. ConclusionThroughout history, the prevention and control of epidemics have been based on the principle of "preserving healthy Qi and avoiding toxic Qi", focusing on the treatment of the causes and characteristics of epidemics through detoxification, Fu-organ dredging, and aromatization, emphasizing the use of Rhei Radix et Rhizoma and other herbs to dredge Fu-organ, eliminate toxins and pathogens, and playing the role of actively intervene with symptomatic medication. And based on the external manifestations of the body's struggle between evil and righteousness, diagnose and treatment according to syndrome differentiation was performed.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
9.Application of 3D-printed auxiliary guides in adolescent scoliosis surgery.
Dong HOU ; Jian-Tao WEN ; Chen ZHANG ; Jin HUANG ; Chang-Quan DAI ; Kai LI ; Han LENG ; Jing ZHANG ; Shao-Bo YANG ; Xiao-Juan CUI ; Juan WANG ; Xiao-Yun YUAN
China Journal of Orthopaedics and Traumatology 2025;38(11):1119-1125
OBJECTIVE:
To investigate the accuracy and safety of pedicle screw placement using 3D-printed auxiliary guides in scoliosis correction surgery for adolescents.
METHODS:
A retrospective analysis was conducted on the clinical data of 51 patients who underwent posterior scoliosis correction surgery from January 2020 to March 2023. Among them, there were 35 cases of adolescent idiopathic scoliosis and 16 cases of congenital scoliosis. The patients were divided into two groups based on the auxiliary tool used:the 3D-printed auxiliary guide screw placement group (3D printing group) and the free-hand screw placement group (free-hand group, without auxiliary tools). The 3D printing group included 32 patients (12 males and 20 females) with an average age of (12.59±2.60) years;the free-hand group included 19 patients (7 males and 12 females) with an average age of (14.58±3.53) years. The two groups were compared in terms of screw placement accuracy and safety, spinal correction rate, intraoperative blood loss, number of intraoperative fluoroscopies, operation time, hospital stay, and preoperative and last follow-up scores of the Scoliosis Research Society-22 (SRS-22) questionnaire.
RESULTS:
A total of 707 pedicle screws were placed in the two groups, with 441 screws in the 3D printing group and 266 screws in the free-hand group. All patients in both groups successfully completed the surgery. There was a statistically significant difference in operation time between the two groups (P<0.05). The screw placement accuracy rate of the 3D printing group was 95.46% (421/441), among which the Grade A placement rate was 89.34% (394/441);the screw placement accuracy rate of the free-hand group was 86.47% (230/266), with a Grade A placement rate of 73.31% (195/266). There were statistically significant differences in the accuracy of Grade A, B, and C screw placements between the two groups (P<0.05), while no statistically significant differences were observed in intraoperative blood loss, number of fluoroscopies, correction rate, or hospital stay (P>0.05). In the SRS-22 questionnaire scores, the scores of functional status and activity ability, self-image, mental status, and pain of patients in each group at the last follow-up were significantly improved compared with those before surgery (P<0.05), but there were no statistically significant differences in all scores between the two groups (P>0.05).
CONCLUSION
In scoliosis correction surgery, compared with traditional free-hand screw placement, the use of 3D-printed auxiliary guides for screw placement significantly improves the accuracy and safety of screw placement and shortens the operation time.
Humans
;
Male
;
Scoliosis/surgery*
;
Female
;
Adolescent
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Pedicle Screws
;
Child
10.Multicenter study on etiological characteristics of bacterial meningitis in infants aged < 90 days.
Ying LIU ; Xue FENG ; Jin GAO ; Ying XIONG ; Chang LIU ; Xin-Lin HOU
Chinese Journal of Contemporary Pediatrics 2025;27(6):648-653
OBJECTIVES:
To investigate the etiological characteristics of bacterial meningitis (BM) in infants aged <90 days.
METHODS:
A retrospective analysis was conducted on the etiology and outcomes of BM in infants aged <90 days admitted to five collaborating hospitals between January 2007 and December 2021. The overall etiological profile was described, and pathogen distributions were compared across different age groups, regions, and years. The prognosis of BM caused by common pathogens was also evaluated.
RESULTS:
A total of 197 infants with bacteriologically confirmed BM were included. The most common pathogens were Escherichia coli (E. coli) (72 cases, 36.5%), group B Streptococcus (GBS) (49 cases, 24.9%), and Listeria monocytogenes (LM) (11 cases, 5.6%). The detection rate of E. coli was significantly higher in the neonatal group than in the infant group (40.2% vs 18.2%, P<0.05). E. coli was the predominant pathogen in Beijing (31.7%) and Kunming (54.1%), while GBS and E. coli were equally prevalent in Shenzhen (33.3%). From 2018 to 2021, the detection rates of E. coli were 46.4%, 47.2%, 45.2%, and 36.8%, respectively, whereas those of GBS were 25.0%, 27.8%, 22.6%, and 31.6%. No significant difference was observed in the overall complication rates among BM cases caused by E. coli, GBS, and LM (P>0.05). However, ventriculitis and hydrocephalus were more frequent in LM meningitis than in GBS meningitis (P<0.017).
CONCLUSIONS
E. coli is the most common pathogen in BM among young infants, particularly neonates. GBS is predominant in Shenzhen, with an increasing trend. LM meningitis accounts for a notable proportion of cases and is associated with poorer outcomes.
Humans
;
Meningitis, Bacterial/microbiology*
;
Infant
;
Retrospective Studies
;
Infant, Newborn
;
Male
;
Female

Result Analysis
Print
Save
E-mail