1.Choosing Wisely between Radiotherapy Dose-Fractionation Schedules: The Molecular Graded Prognostic Assessment for Elderly Glioblastoma Patients
Hye In LEE ; Jina KIM ; In Ah KIM ; Joo Ho LEE ; Jaeho CHO ; Rifaquat RAHMAN ; Geoffrey FELL ; Chan Woo WEE ; Hong In YOON
Cancer Research and Treatment 2025;57(2):378-386
Purpose:
This study aimed to develop a graded prognostic assessment (GPA) model integrating genomic characteristics for elderly patients with glioblastoma (eGBM), and to compare the efficacy of different radiotherapy schedules.
Materials and Methods:
This multi-institutional retrospective study included patients aged ≥ 65 years who underwent surgical resection followed by radiotherapy with or without temozolomide (TMZ) for newly diagnosed eGBM. Based on the significant factors identified in the multivariate analysis for overall survival (OS), the molecular GPA for eGBM (eGBM-molGPA) was established.
Results:
A total of 334 and 239 patients who underwent conventionally fractionated radiotherapy (CFRT) and hypofractionated radiotherapy (HFRT) were included, respectively, with 86% of patients receiving TMZ-based chemoradiation. With a median follow-up of 17.4 months (range, 3.3 to 149.9 months), the median OS was 18.7 months for CFRT+TMZ group, 15.1 months for HFRT+TMZ group, and 10.4 months for radiotherapy alone group (CFRT+TMZ vs. HFRT+TMZ: hazard ratio [HR], 1.52; p < 0.001 and CFRT+TMZ vs. radiotherapy alone: HR, 2.52; p < 0.001). In a combined analysis with the NOA-08 and Nordic trials, CFRT+TMZ group exhibited the highest survival rates among all treatment groups. The eGBM-molGPA, which integrated four clinical and three molecular parameters, stratified patients into low-, intermediate-, and high-risk groups. CFRT+TMZ significantly improved OS compared to HFRT+TMZ or radiotherapy alone in the low-risk (p=0.023) and intermediate-risk groups (p < 0.001). However, in the high-risk group, there was no significant difference in OS between treatment options (p=0.770).
Conclusion
CFRT+TMZ may be more effective than HFRT+TMZ or radiotherapy alone for selected eGBM patients. The novel eGBM-molGPA model can guide treatment selection for this patient population.
2.Choosing Wisely between Radiotherapy Dose-Fractionation Schedules: The Molecular Graded Prognostic Assessment for Elderly Glioblastoma Patients
Hye In LEE ; Jina KIM ; In Ah KIM ; Joo Ho LEE ; Jaeho CHO ; Rifaquat RAHMAN ; Geoffrey FELL ; Chan Woo WEE ; Hong In YOON
Cancer Research and Treatment 2025;57(2):378-386
Purpose:
This study aimed to develop a graded prognostic assessment (GPA) model integrating genomic characteristics for elderly patients with glioblastoma (eGBM), and to compare the efficacy of different radiotherapy schedules.
Materials and Methods:
This multi-institutional retrospective study included patients aged ≥ 65 years who underwent surgical resection followed by radiotherapy with or without temozolomide (TMZ) for newly diagnosed eGBM. Based on the significant factors identified in the multivariate analysis for overall survival (OS), the molecular GPA for eGBM (eGBM-molGPA) was established.
Results:
A total of 334 and 239 patients who underwent conventionally fractionated radiotherapy (CFRT) and hypofractionated radiotherapy (HFRT) were included, respectively, with 86% of patients receiving TMZ-based chemoradiation. With a median follow-up of 17.4 months (range, 3.3 to 149.9 months), the median OS was 18.7 months for CFRT+TMZ group, 15.1 months for HFRT+TMZ group, and 10.4 months for radiotherapy alone group (CFRT+TMZ vs. HFRT+TMZ: hazard ratio [HR], 1.52; p < 0.001 and CFRT+TMZ vs. radiotherapy alone: HR, 2.52; p < 0.001). In a combined analysis with the NOA-08 and Nordic trials, CFRT+TMZ group exhibited the highest survival rates among all treatment groups. The eGBM-molGPA, which integrated four clinical and three molecular parameters, stratified patients into low-, intermediate-, and high-risk groups. CFRT+TMZ significantly improved OS compared to HFRT+TMZ or radiotherapy alone in the low-risk (p=0.023) and intermediate-risk groups (p < 0.001). However, in the high-risk group, there was no significant difference in OS between treatment options (p=0.770).
Conclusion
CFRT+TMZ may be more effective than HFRT+TMZ or radiotherapy alone for selected eGBM patients. The novel eGBM-molGPA model can guide treatment selection for this patient population.
3.Choosing Wisely between Radiotherapy Dose-Fractionation Schedules: The Molecular Graded Prognostic Assessment for Elderly Glioblastoma Patients
Hye In LEE ; Jina KIM ; In Ah KIM ; Joo Ho LEE ; Jaeho CHO ; Rifaquat RAHMAN ; Geoffrey FELL ; Chan Woo WEE ; Hong In YOON
Cancer Research and Treatment 2025;57(2):378-386
Purpose:
This study aimed to develop a graded prognostic assessment (GPA) model integrating genomic characteristics for elderly patients with glioblastoma (eGBM), and to compare the efficacy of different radiotherapy schedules.
Materials and Methods:
This multi-institutional retrospective study included patients aged ≥ 65 years who underwent surgical resection followed by radiotherapy with or without temozolomide (TMZ) for newly diagnosed eGBM. Based on the significant factors identified in the multivariate analysis for overall survival (OS), the molecular GPA for eGBM (eGBM-molGPA) was established.
Results:
A total of 334 and 239 patients who underwent conventionally fractionated radiotherapy (CFRT) and hypofractionated radiotherapy (HFRT) were included, respectively, with 86% of patients receiving TMZ-based chemoradiation. With a median follow-up of 17.4 months (range, 3.3 to 149.9 months), the median OS was 18.7 months for CFRT+TMZ group, 15.1 months for HFRT+TMZ group, and 10.4 months for radiotherapy alone group (CFRT+TMZ vs. HFRT+TMZ: hazard ratio [HR], 1.52; p < 0.001 and CFRT+TMZ vs. radiotherapy alone: HR, 2.52; p < 0.001). In a combined analysis with the NOA-08 and Nordic trials, CFRT+TMZ group exhibited the highest survival rates among all treatment groups. The eGBM-molGPA, which integrated four clinical and three molecular parameters, stratified patients into low-, intermediate-, and high-risk groups. CFRT+TMZ significantly improved OS compared to HFRT+TMZ or radiotherapy alone in the low-risk (p=0.023) and intermediate-risk groups (p < 0.001). However, in the high-risk group, there was no significant difference in OS between treatment options (p=0.770).
Conclusion
CFRT+TMZ may be more effective than HFRT+TMZ or radiotherapy alone for selected eGBM patients. The novel eGBM-molGPA model can guide treatment selection for this patient population.
4.The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center
Min Cheol HAN ; Seo Hee CHOI ; Chae-Seon HONG ; Yong Bae KIM ; Woong Sub KOOM ; Jin Sung KIM ; Jaeho CHO ; Chan Woo WEE ; Changhwan KIM ; Jong Won PARK ; Soorim HAN ; Heejeong LEE ; Hong In YOON ; Ik Jae LEE ; Ki Chang KEUM
Radiation Oncology Journal 2024;42(4):295-307
Purpose:
This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world’s first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials and Methods:
Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results:
This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC’s facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC’s sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT.
Conclusion
This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC’s pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
5.Clinical indications and future directions of carbonion radiotherapy: a narrative review
Seo Hee CHOI ; Woong Sub KOOM ; Hong In YOON ; Kyung Hwan KIM ; Chan Woo WEE ; Jaeho CHO ; Yong Bae KIM ; Ki Chang KEUM ; Ik Jae LEE
The Ewha Medical Journal 2024;47(4):e56-
Carbon-ion radiotherapy (CIRT) offers superior dose distributions and greater biological effectiveness than conventional photon-based radiotherapy (RT). Due to its higher linear energy transfer and relative biological effectiveness, CIRT is particularly effective against radioresistant tumors and those located near critical organs. Since the first dedicated CIRT facility was established in Japan in 1994, CIRT has demonstrated remarkable efficacy against various malignancies, including head and neck tumors, skull base and upper cervical spine tumors, non-small-cell lung cancer, hepatocellular carcinoma, pancreatic cancer, prostate cancer, and bone and soft tissue sarcomas. This narrative review provides a comprehensive overview of the current status of CIRT, highlighting its clinical indications and future directions. According to clinical studies, CIRT achieves high local control rates with manageable toxicity across multiple cancer types. For instance, in head and neck tumors (e.g., adenoid cystic carcinoma and mucosal melanoma), CIRT has achieved local control rates exceeding 80%. In early-stage non-small-cell lung cancer, CIRT has resulted in local control rates over 90% with minimal toxicity. Moreover, CIRT has shown promise in treating challenging cases of hepatocellular carcinoma and pancreatic cancer, where conventional therapies are limited. Nonetheless, the global adoption of CIRT remains limited due to high costs and complexity. Future directions include conducting randomized controlled trials to establish high-level evidence, integrating new technologies such as ultrahigh-dose-rate (FLASH) therapy, and expanding CIRT facilities globally with strategic planning and cost-effectiveness analyses. If these challenges are addressed, CIRT is poised to play a transformative role in cancer treatment, improving survival rates and the quality of life.
6.The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center
Min Cheol HAN ; Seo Hee CHOI ; Chae-Seon HONG ; Yong Bae KIM ; Woong Sub KOOM ; Jin Sung KIM ; Jaeho CHO ; Chan Woo WEE ; Changhwan KIM ; Jong Won PARK ; Soorim HAN ; Heejeong LEE ; Hong In YOON ; Ik Jae LEE ; Ki Chang KEUM
Radiation Oncology Journal 2024;42(4):295-307
Purpose:
This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world’s first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials and Methods:
Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results:
This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC’s facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC’s sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT.
Conclusion
This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC’s pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
7.Clinical indications and future directions of carbonion radiotherapy: a narrative review
Seo Hee CHOI ; Woong Sub KOOM ; Hong In YOON ; Kyung Hwan KIM ; Chan Woo WEE ; Jaeho CHO ; Yong Bae KIM ; Ki Chang KEUM ; Ik Jae LEE
The Ewha Medical Journal 2024;47(4):e56-
Carbon-ion radiotherapy (CIRT) offers superior dose distributions and greater biological effectiveness than conventional photon-based radiotherapy (RT). Due to its higher linear energy transfer and relative biological effectiveness, CIRT is particularly effective against radioresistant tumors and those located near critical organs. Since the first dedicated CIRT facility was established in Japan in 1994, CIRT has demonstrated remarkable efficacy against various malignancies, including head and neck tumors, skull base and upper cervical spine tumors, non-small-cell lung cancer, hepatocellular carcinoma, pancreatic cancer, prostate cancer, and bone and soft tissue sarcomas. This narrative review provides a comprehensive overview of the current status of CIRT, highlighting its clinical indications and future directions. According to clinical studies, CIRT achieves high local control rates with manageable toxicity across multiple cancer types. For instance, in head and neck tumors (e.g., adenoid cystic carcinoma and mucosal melanoma), CIRT has achieved local control rates exceeding 80%. In early-stage non-small-cell lung cancer, CIRT has resulted in local control rates over 90% with minimal toxicity. Moreover, CIRT has shown promise in treating challenging cases of hepatocellular carcinoma and pancreatic cancer, where conventional therapies are limited. Nonetheless, the global adoption of CIRT remains limited due to high costs and complexity. Future directions include conducting randomized controlled trials to establish high-level evidence, integrating new technologies such as ultrahigh-dose-rate (FLASH) therapy, and expanding CIRT facilities globally with strategic planning and cost-effectiveness analyses. If these challenges are addressed, CIRT is poised to play a transformative role in cancer treatment, improving survival rates and the quality of life.
8.Clinical indications and future directions of carbonion radiotherapy: a narrative review
Seo Hee CHOI ; Woong Sub KOOM ; Hong In YOON ; Kyung Hwan KIM ; Chan Woo WEE ; Jaeho CHO ; Yong Bae KIM ; Ki Chang KEUM ; Ik Jae LEE
The Ewha Medical Journal 2024;47(4):e56-
Carbon-ion radiotherapy (CIRT) offers superior dose distributions and greater biological effectiveness than conventional photon-based radiotherapy (RT). Due to its higher linear energy transfer and relative biological effectiveness, CIRT is particularly effective against radioresistant tumors and those located near critical organs. Since the first dedicated CIRT facility was established in Japan in 1994, CIRT has demonstrated remarkable efficacy against various malignancies, including head and neck tumors, skull base and upper cervical spine tumors, non-small-cell lung cancer, hepatocellular carcinoma, pancreatic cancer, prostate cancer, and bone and soft tissue sarcomas. This narrative review provides a comprehensive overview of the current status of CIRT, highlighting its clinical indications and future directions. According to clinical studies, CIRT achieves high local control rates with manageable toxicity across multiple cancer types. For instance, in head and neck tumors (e.g., adenoid cystic carcinoma and mucosal melanoma), CIRT has achieved local control rates exceeding 80%. In early-stage non-small-cell lung cancer, CIRT has resulted in local control rates over 90% with minimal toxicity. Moreover, CIRT has shown promise in treating challenging cases of hepatocellular carcinoma and pancreatic cancer, where conventional therapies are limited. Nonetheless, the global adoption of CIRT remains limited due to high costs and complexity. Future directions include conducting randomized controlled trials to establish high-level evidence, integrating new technologies such as ultrahigh-dose-rate (FLASH) therapy, and expanding CIRT facilities globally with strategic planning and cost-effectiveness analyses. If these challenges are addressed, CIRT is poised to play a transformative role in cancer treatment, improving survival rates and the quality of life.
9.The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center
Min Cheol HAN ; Seo Hee CHOI ; Chae-Seon HONG ; Yong Bae KIM ; Woong Sub KOOM ; Jin Sung KIM ; Jaeho CHO ; Chan Woo WEE ; Changhwan KIM ; Jong Won PARK ; Soorim HAN ; Heejeong LEE ; Hong In YOON ; Ik Jae LEE ; Ki Chang KEUM
Radiation Oncology Journal 2024;42(4):295-307
Purpose:
This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world’s first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials and Methods:
Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results:
This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC’s facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC’s sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT.
Conclusion
This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC’s pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
10.The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center
Min Cheol HAN ; Seo Hee CHOI ; Chae-Seon HONG ; Yong Bae KIM ; Woong Sub KOOM ; Jin Sung KIM ; Jaeho CHO ; Chan Woo WEE ; Changhwan KIM ; Jong Won PARK ; Soorim HAN ; Heejeong LEE ; Hong In YOON ; Ik Jae LEE ; Ki Chang KEUM
Radiation Oncology Journal 2024;42(4):295-307
Purpose:
This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world’s first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials and Methods:
Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results:
This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC’s facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC’s sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT.
Conclusion
This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC’s pioneering contribution and forecasting the widespread integration of this groundbreaking technology.

Result Analysis
Print
Save
E-mail