1.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
2.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
3.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
4.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
5.Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary
Seunghyun LEE ; Namki HONG ; Gyu Seop KIM ; Jing LI ; Xiaoyu LIN ; Sarah SEAGER ; Sungjae SHIN ; Kyoung Jin KIM ; Jae Hyun BAE ; Seng Chan YOU ; Yumie RHEE ; Sin Gon KIM
Yonsei Medical Journal 2025;66(3):187-194
Purpose:
Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model.
Materials and Methods:
Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital’s electronic health record from South Korea; IQVIA’s United Kingdom (UK) database for general practitioners; and IQVIA’s United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea.
Results:
The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%–62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34–2.07 (Korea), 0.13–0.30 (US); hypoparathyroidism, 0.40–1.20 (Korea), 0.59–1.01 (US), 0.00–1.78 (UK); and pheochromocytoma/paraganglioma, 0.95–1.67 (Korea), 0.35–0.77 (US), 0.00–0.49 (UK).
Conclusion
Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.
6.Association of COVID-19 'circuit breaker' with higher rates of elderly trauma admissions.
Yee Har LIEW ; Zhenghong LIU ; Mian Jie LIM ; Pei Leng CHONG ; Norhayati Bte Mohamed JAINODIN ; Teng Teng PEH ; Jing Jing CHAN ; Sachin MATHUR ; Jeremy Choon Peng WEE
Singapore medical journal 2025;66(2):91-96
INTRODUCTION:
In December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus emerged and caused a worldwide pandemic, leading to measures being imposed by many countries to reduce its transmission. Singapore implemented the 'circuit breaker', which restricted all movements except for access to necessities and healthcare services. We aimed to investigate the impact of lockdown measures on the pattern of trauma and its effects.
METHODS:
An observational, retrospective, single-centre descriptive study was conducted using the trauma registry in Singapore General Hospital. It included patients above 18 years old who presented to the emergency department with trauma and were subsequently admitted. Patients admitted from 1 February 2020 to 31 July 2020 and those admitted during the same timeframe in 2019 were studied. Subgroup analyses were performed for patients aged ≥65 years and those <65 years.
RESULTS:
A total of 1,037 patients were included for analysis. A 17.6% increase in trauma presentations was seen from 2019 to 2020. Patients aged ≥65 years accounted for the rise in admissions. The predominant mechanism of injury was falls at home for older patients and vehicular accidents in patients <65 years. There were no significant differences in injury severity score, intensive care/high-dependency unit admission rates, length of stay, mortality rate, and subsequent need for inpatient rehabilitation.
CONCLUSION
Our study provided information on differences in trauma presentations before and during the COVID-19 pandemic. Further studies are required to better inform on additional precautionary measures needed to reduce trauma and improve safety during future lockdowns and pandemics.
Humans
;
COVID-19/prevention & control*
;
Aged
;
Retrospective Studies
;
Singapore/epidemiology*
;
Male
;
Female
;
Wounds and Injuries/epidemiology*
;
Aged, 80 and over
;
Middle Aged
;
SARS-CoV-2
;
Hospitalization/statistics & numerical data*
;
Adult
;
Emergency Service, Hospital/statistics & numerical data*
;
Registries
;
Accidental Falls/statistics & numerical data*
;
Pandemics
;
Patient Admission/statistics & numerical data*
;
Length of Stay
;
Accidents, Traffic/statistics & numerical data*
9.Full-size diffusion model for adaptive feature medical image fusion.
Jing DI ; Shuhui SHI ; Heran WANG ; Chan LIANG ; Yunlong ZHU
Journal of Biomedical Engineering 2025;42(5):871-882
To address issues such as loss of detailed information, blurred target boundaries, and unclear structural hierarchy in medical image fusion, this paper proposes an adaptive feature medical image fusion network based on a full-scale diffusion model. First, a region-level feature map is generated using a kernel-based saliency map to enhance local features and boundary details. Then, a full-scale diffusion feature extraction network is employed for global feature extraction, alongside a multi-scale denoising U-shaped network designed to fully capture cross-layer information. A multi-scale feature integration module is introduced to reinforce texture details and structural information extracted by the encoder. Finally, an adaptive fusion scheme is applied to progressively fuse region-level features, global features, and source images layer by layer, enhancing the preservation of detail information. To validate the effectiveness of the proposed method, this paper validates the proposed model on the publicly available Harvard dataset and an abdominal dataset. By comparing with nine other representative image fusion methods, the proposed approach achieved improvements across seven evaluation metrics. The results demonstrate that the proposed method effectively extracts both global and local features of medical images, enhances texture details and target boundary clarity, and generates fusion image with high contrast and rich information, providing more reliable support for subsequent clinical diagnosis.
Humans
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
;
Neural Networks, Computer
;
Diagnostic Imaging/methods*
;
Image Interpretation, Computer-Assisted/methods*
10.Predictive Ability of Hypertriglyceridemic Waist,Hypertriglyceridemic Waist-to-Height Ratio,and Waist-to-Hip Ratio for Cardiometabolic Risk Factors Clustering Screening among Chinese Children and Adolescents
Li Tian XIAO ; Qian Shu YUAN ; Yu Jing GAO ; S.Baker JULIEN ; De Yi YANG ; Jie Xi WANG ; Juan Chan ZHENG ; Hui Yan DONG ; Yong Zhi ZOU
Biomedical and Environmental Sciences 2024;37(3):233-241
Objective Hypertriglyceridemic waist(HW),hypertriglyceridemic waist-to-height ratio(HWHtR),and waist-to-hip ratio(WHR)have been shown to be indicators of cardiometabolic risk factors.However,it is not clear which indicator is more suitable for children and adolescents.We aimed to investigate the relationship between HW,HWHtR,WHR,and cardiovascular risk factors clustering to determine the best screening tools for cardiometabolic risk in children and adolescents. Methods This was a national cross-sectional study.Anthropometric and biochemical variables were assessed in approximately 70,000 participants aged 6-18 years from seven provinces in China.Demographics,physical activity,dietary intake,and family history of chronic diseases were obtained through questionnaires.ANOVA,x2 and logistic regression analysis was conducted. Results A significant sex difference was observed for HWHtR and WHR,but not for HW phenotype.The risk of cardiometabolic health risk factor clustering with HW phenotype or the HWHtR phenotype was significantly higher than that with the non-HW or non-HWHtR phenotypes among children and adolescents(HW:OR = 12.22,95%CI:9.54-15.67;HWHtR:OR = 9.70,95%CI:6.93-13.58).Compared with the HW and HWHtR phenotypes,the association between risk of cardiometabolic health risk factors(CHRF)clustering and high WHR was much weaker and not significant(WHR:OR = 1.14,95%CI:0.97-1.34). Conclusion Compared with HWHtR and WHR,the HW phenotype is a more convenient indicator with higher applicability to screen children and adolescents for cardiovascular risk factors.

Result Analysis
Print
Save
E-mail