1.Contemporary Statistics of Acute Ischemic Stroke and Transient Ischemic Attack in 2021: Insights From the CRCS-K-NIH Registry
Do Yeon KIM ; Tai Hwan PARK ; Yong-Jin CHO ; Jong-Moo PARK ; Kyungbok LEE ; Minwoo LEE ; Juneyoung LEE ; Sang Yoon BAE ; Da Young HONG ; Hannah JUNG ; Eunvin KO ; Hyung Seok GUK ; Beom Joon KIM ; Jun Yup KIM ; Jihoon KANG ; Moon-Ku HAN ; Sang-Soon PARK ; Keun-Sik HONG ; Hong-Kyun PARK ; Jeong-Yoon LEE ; Byung-Chul LEE ; Kyung-Ho YU ; Mi Sun OH ; Dong-Eog KIM ; Dong-Seok GWAK ; Soo Joo LEE ; Jae Guk KIM ; Jun LEE ; Doo Hyuk KWON ; Jae-Kwan CHA ; Dae-Hyun KIM ; Joon-Tae KIM ; Kang-Ho CHOI ; Hyunsoo KIM ; Jay Chol CHOI ; Joong-Goo KIM ; Chul-Hoo KANG ; Sung-il SOHN ; Jeong-Ho HONG ; Hyungjong PARK ; Sang-Hwa LEE ; Chulho KIM ; Dong-Ick SHIN ; Kyu Sun YUM ; Kyusik KANG ; Kwang-Yeol PARK ; Hae-Bong JEONG ; Chan-Young PARK ; Keon-Joo LEE ; Jee Hyun KWON ; Wook-Joo KIM ; Ji Sung LEE ; Hee-Joon BAE ;
Journal of Korean Medical Science 2024;39(34):e278-
This report presents the latest statistics on the stroke population in South Korea, sourced from the Clinical Research Collaborations for Stroke in Korea-National Institute for Health (CRCS-K-NIH), a comprehensive, nationwide, multicenter stroke registry. The Korean cohort, unlike western populations, shows a male-to-female ratio of 1.5, attributed to lower risk factors in Korean women. The average ages for men and women are 67 and 73 years, respectively.Hypertension is the most common risk factor (67%), consistent with global trends, but there is a higher prevalence of diabetes (35%) and smoking (21%). The prevalence of atrial fibrillation (19%) is lower than in western populations, suggesting effective prevention strategies in the general population. A high incidence of large artery atherosclerosis (38%) is observed, likely due to prevalent intracranial arterial disease in East Asians and advanced imaging techniques.There has been a decrease in intravenous thrombolysis rates, from 12% in 2017–2019 to 10% in 2021, with no improvements in door-to-needle and door-to-puncture times, worsened by the coronavirus disease 2019 pandemic. While the use of aspirin plus clopidogrel for noncardioembolic stroke and direct oral anticoagulants for atrial fibrillation is well-established, the application of direct oral anticoagulants for non-atrial fibrillation cardioembolic strokes in the acute phase requires further research. The incidence of early neurological deterioration (13%) and the cumulative incidence of recurrent stroke at 3 months (3%) align with global figures. Favorable outcomes at 3 months (63%) are comparable internationally, yet the lack of improvement in dependency at 3 months highlights the need for advancements in acute stroke care.
2.A Randomized Phase III Study of Patients With Advanced Gastric Adenocarcinoma Without Progression After Six Cycles of XELOX (Capecitabine Plus Oxaliplatin) Followed by Capecitabine Maintenance or Clinical Observation
Guk Jin LEE ; Hyunho KIM ; Sung Shim CHO ; Hyung Soon PARK ; Ho Jung AN ; In Sook WOO ; Jae Ho BYUN ; Ji Hyung HONG ; Yoon Ho KO ; Der Sheng SUN ; Hye Sung WON ; Jong Youl JIN ; Ji Chan PARK ; In-Ho KIM ; Sang Young ROH ; Byoung Yong SHIM
Journal of Gastric Cancer 2023;23(2):315-327
Purpose:
Oxaliplatin, a component of the capecitabine plus oxaliplatin (XELOX) regimen, has a more favorable toxicity profile than cisplatin in patients with advanced gastric cancer (GC). However, oxaliplatin can induce sensory neuropathy and cumulative, dose-related toxicities. Thus, the capecitabine maintenance regimen may achieve the maximum treatment effect while reducing the cumulative neurotoxicity of oxaliplatin. This study aimed to compare the survival of patients with advanced GC between capecitabine maintenance and observation after 1st line XELOX chemotherapy.
Materials and Methods:
Sixty-three patients treated with six cycles of XELOX for advanced GC in six hospitals of the Catholic University of Korea were randomized 1:1 to receive capecitabine maintenance or observation. The primary endpoint was progression-free survival (PFS), analyzed using a two-sided log-rank test stratified at a 5% significance level.
Results:
Between 2015 and 2020, 32 and 31 patients were randomized into the maintenance and observation groups, respectively. After randomization, the median number of capecitabine maintenance cycles was 6. The PFS was significantly higher in the maintenance group than the observation group (6.3 vs. 4.1 months, P=0.010). Overall survival was not significantly different between the 2 groups (18.2 vs. 16.5 months, P=0.624). Toxicities, such as hand-foot syndrome, were reported in some maintenance group patients. Maintenance treatment was a significant factor associated with PFS in multivariate analysis (hazard ratio, 0.472; 95% confidence interval, 0.250–0.890; P=0.020).
Conclusions
After 6 cycles of XELOX chemotherapy, capecitabine maintenance significantly prolonged PFS compared with observation, and toxicity was manageable. Maintenance treatment was a significant prognostic factor associated with PFS.
3.Clinical Characteristics of Cytomegalovirus Disease of the Upper Gastrointestinal Tract: A 10-Year Multicenter Retrospective Study
Ga-Ram YOU ; Seon-Young PARK ; Hye-Su YOU ; Seung-Young SEO ; Sung-Kyun YIM ; Byung-Chul JIN ; Jung-In LEE ; Young-Dae KIM ; Suck-Chei CHOI ; Chan-Guk PARK ; Wan-Sik LEE
The Korean Journal of Helicobacter and Upper Gastrointestinal Research 2023;23(4):294-301
Objectives:
Gastrointestinal cytomegalovirus (CMV) disease is a major contributor to mortality in immunocompromised patients. Few studies have discussed upper gastrointestinal CMV (UGICMV) disease in immunocompetent patients. We compared the clinical outcomes of UGI-CMV between immunocompromised and immunocompetent patients.
Methods:
This retrospective study included patients with UGI-CMV disease from five tertiary hospitals across Korea (2010– 2022). Patients’ clinical data and outcomes were recorded.
Results:
UGI-CMV was diagnosed in 54 patients; 27 (50.0%) had esophageal, 24 (44.4%) had gastric, and 3 patients (5.6%) had duodenal involvement. Patients’ median age was 64 years (interquartile range 53–75 years), and the most common comorbidities included hypertension (57.4%) and diabetes (38.9%). The predominant symptom was abdominal pain (46.3%), and the most common endoscopic finding was ulcers (70.4%). Antiviral treatment was administered to 31 patients, and 23 patients underwent observation without treatment. We investigated 32 immunocompromised (59.3%) and 22 immunocompetent (40.7%) patients and observed no intergroup differences in comorbidities and in laboratory and endoscopic findings. Immunocompromised patients had longer length of hospitalization (median 46.2 days vs. 20.0 days, p=0.001). However, treatment outcomes, including the need for intensive care unit admission and mortality did not significantly differ. The overall mortality rate was 13.0%; one patient from the immunocompromised group died of UGI-CMV disease. The treatment success rate was higher in immunocompromised patients who received antiviral therapy (p=0.011).
Conclusions
UGI-CMV disease is not uncommon in immunocompetent patients, although symptoms are milder than those in immunocompromised patients. Our findings emphasize the importance of clinical vigilance for accurate diagnosis of CMV infection, particularly in susceptible symptomatic patients and highlight the need for active antiviral treatment for management of immunocompromised patients.
4.Clinical Practice Guidelines for the Endoscopic Management of Peripancreatic Fluid Collections
Chi Hyuk OH ; Tae Jun SONG ; Jun Kyu LEE ; Jin-Seok PARK ; Jae Min LEE ; Jun Hyuk SON ; Dong Kee JANG ; Miyoung CHOI ; Jeong-Sik BYEON ; In Seok LEE ; Soo Teik LEE ; Ho Soon CHOI ; Ho Gak KIM ; Hoon Jai CHUN ; Chan Guk PARK ; Joo Young CHO
Korean Journal of Pancreas and Biliary Tract 2022;27(2):61-80
Endoscopic ultrasonography-guided intervention has gradually become a standard treatment for peripancreatic fluid collections (PFCs). However, it is difficult to popularize the procedure in Korea because of restrictions on insurance claims regarding the use of endoscopic accessories, as well as the lack of standardized Korean clinical practice guidelines. The Korean Society of Gastrointestinal Endoscopy (appointed a Task Force to develope medical guidelines by referring to the manual for clinical practice guidelines development prepared by the National Evidence-Based Healthcare Collaborating Agency. Previous studies on PFCs were searched, and certain studies were selected with the help of experts. Then, a set of key questions was selected, and treatment guidelines were systematically reviewed. Answers to these questions and recommendations were selected via peer review. This guideline discusses endoscopic management of PFCs and makes recommendations on indication for the procedure, pre-procedural preparations, optimal approach for drainage, procedural considerations (e.g., types of stent, advantages and disadvantages of plastic and metal stents, and accessories), adverse events of endoscopic intervention, and procedural quality issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This will be revised as necessary to address advances and changes in technology and evidence obtained in clinical practice and future studies.
5.Clinical and Technical Guideline for Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Korean Journal of Pancreas and Biliary Tract 2021;26(4):263-264
6.Clinical and Technical Guideline for Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Korean Journal of Pancreas and Biliary Tract 2021;26(3):125-147
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in eight categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice.
7.Clinical and Technical Guideline for Endoscopic Ultrasound-guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
The Korean Journal of Gastroenterology 2021;78(2):73-93
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in eight categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues.This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice
8.Clinical Practice Guidelines for the Endoscopic Management of Peripancreatic Fluid Collections
Chi Hyuk OH ; Jun Kyu LEE ; Tae Jun SONG ; Jin-Seok PARK ; Jae Min LEE ; Jun Hyuk SON ; Dong Kee JANG ; Miyoung CHOI ; Jeong-Sik BYEON ; In Seok LEE ; Soo Teik LEE ; Ho Soon CHOI ; Ho Gak KIM ; Hoon Jai CHUN ; Chan Guk PARK ; Joo Young CHO
Clinical Endoscopy 2021;54(4):505-521
Endoscopic ultrasonography-guided intervention has gradually become a standard treatment for peripancreatic fluid collections (PFCs). However, it is difficult to popularize the procedure in Korea because of restrictions on insurance claims regarding the use of endoscopic accessories, as well as the lack of standardized Korean clinical practice guidelines. The Korean Society of Gastrointestinal Endoscopy (KSGE) appointed a Task Force to develope medical guidelines by referring to the manual for clinical practice guidelines development prepared by the National Evidence-Based Healthcare Collaborating Agency. Previous studies on PFCs were searched, and certain studies were selected with the help of experts. Then, a set of key questions was selected, and treatment guidelines were systematically reviewed. Answers to these questions and recommendations were selected via peer review. This guideline discusses endoscopic management of PFCs and makes recommendations on Indications for the procedure, pre-procedural preparations, optimal approach for drainage, procedural considerations (e.g., types of stent, advantages and disadvantages of plastic and metal stents, and accessories), adverse events of endoscopic intervention, and procedural quality issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This will be revised as necessary to address advances and changes in technology and evidence obtained in clinical practice and future studies.
9.Clinical and Technical Guideline for Endoscopic Ultrasound (EUS)-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy (KSGE)
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Clinical Endoscopy 2021;54(2):161-181
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy (KSGE) appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in 8 categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice.
10.Clinical and Technical Guideline for Endoscopic Ultrasound-Guided Tissue Acquisition of Pancreatic Solid Tumor: Korean Society of Gastrointestinal Endoscopy
Moon Jae CHUNG ; Se Woo PARK ; Seong-Hun KIM ; Chang Min CHO ; Jun-Ho CHOI ; Eun Kwang CHOI ; Tae Hoon LEE ; Eunae CHO ; Jun Kyu LEE ; Tae Jun SONG ; Jae Min LEE ; Jun Hyuk SON ; Jin Suk PARK ; Chi Hyuk OH ; Dong-Ah PARK ; Jeong-Sik BYEON ; Soo Teik LEE ; Ho Gak KIM ; Hoon Jai CHUN ; Ho Soon CHOI ; Chan Guk PARK ; Joo Young CHO
Korean Journal of Pancreas and Biliary Tract 2021;26(3):125-147
Endoscopic ultrasound (EUS)-guided tissue acquisition of pancreatic solid tumor requires a strict recommendation for its proper use in clinical practice because of its technical difficulty and invasiveness. The Korean Society of Gastrointestinal Endoscopy appointed a Task Force to draft clinical practice guidelines for EUS-guided tissue acquisition of pancreatic solid tumor. The strength of recommendation and the level of evidence for each statement were graded according to the Minds Handbook for Clinical Practice Guideline Development 2014. The committee, comprising a development panel of 16 endosonographers and an expert on guideline development methodology, developed 12 evidence-based recommendations in eight categories intended to help physicians make evidence-based clinical judgments with regard to the diagnosis of pancreatic solid tumor. This clinical practice guideline discusses EUS-guided sampling in pancreatic solid tumor and makes recommendations on circumstances that warrant its use, technical issues related to maximizing the diagnostic yield (e.g., needle type, needle diameter, adequate number of needle passes, sample obtaining techniques, and methods of specimen processing), adverse events of EUS-guided tissue acquisition, and learning-related issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This guideline may not be applicable for all clinical situations and should be interpreted in light of specific situations and the availability of resources. It will be revised as necessary to cover progress and changes in technology and evidence from clinical practice.

Result Analysis
Print
Save
E-mail