1.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
Carthamus tinctorius/chemistry*
;
Chalcone/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Cytokines/metabolism*
;
Flavonoids/therapeutic use*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Humans
;
Ischemic Stroke/drug therapy*
;
Janus Kinase 2/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prostaglandin D2
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quinones/pharmacology*
2.Safflower Yellow Compounds Alleviate Okadaic Acid-Induced Impairment of Neurite Outgrowth in Differentiated SH-SY5Y Cells.
Zhen Hua WANG ; Xiao Bing SHI ; Gang LI ; Xue Yan HAO ; Zhen Zhen YUAN ; Xiao Hai CAO ; Hong Lun WANG ; Ji LI ; Cheng Jun MA
Biomedical and Environmental Sciences 2020;33(10):812-816
3.Protective effect of safflower yellow injection against rat MIRI by TLR-NF-κB inflammatory pathway.
Ling-Mei LI ; Jian-Hua FU ; Hao GUO ; Xiao HAN ; Lei LI ; Gao-Jie XIN ; Yu-Wei ZHAO ; Qiong ZHANG ; Qiu-Sheng ZHENG ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2019;44(12):2566-2571
This study was to investigate the mechanism of safflower yellow injection for regulating inflammatory response against myocardial ischemia-reperfusion injury( MIRI) in rats. Male Wistar rats were randomly divided into sham operation group,model group,Hebeishuang group,safflower yellow injection high,medium and low dose groups. MIRI model was established by ligating left anterior descending coronary artery. Myocardial histopathological changes were observed by HE staining; myocardial infarct size was detected by TTC staining; content and changes of tumor necrosis factor-α( TNF-α) and interleukin-6( IL-6),serum creatine kinase( CK),aspartate aminotransferase( AST),and lactate dehydrogenase( LDH) were detected by biochemical method or enzyme-linked immunosorbent assay( ELISA). Western blot assay was used to detect the protein expression of Toll-like receptor 4( TLR4) and nuclear factor-κB( NF-κB p65) in myocardial tissues. The results showed that as compared with the sham operation group,the myocardial arrangement of the model group was disordered,with severe edemain the interstitial,significantly increased area of myocardial infarction,increased activities of AST,CK and LDH in serum,and significantly increased contents of TNF-α and IL-6; the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were also increased. As compared with the model group,the myocardial tissues were arranged neatlyin the Hebeishuang group and safflower yellow injection high,medium and low dose groups; the edema was significantly reduced; the myocardial infarct size was significantly reduced; the serum AST,CK,LDH activity and TNF-α,IL-6 levels were significantly decreased,and the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were decreased. As compared with the Hebeishuang group,the myocardial infarct size was larger in the safflower yellow injection high,medium and low dose groups; the activities of AST,CK and LDH in serum and the contents of TNF-α and IL-6 in serum were higher,but there was no statistically significant difference in the expression levels of TLR4 and NF-κB( p65) protein in tissues. It is suggested that safflower yellow injection has a significant anti-MIRI effect,and its mechanism may be related to the regulation of TLR-NF-κB pathway to inhibit inflammatory response.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Aspartate Aminotransferases
;
blood
;
Chalcone
;
analogs & derivatives
;
pharmacology
;
Creatine Kinase
;
blood
;
Interleukin-6
;
metabolism
;
L-Lactate Dehydrogenase
;
blood
;
Male
;
Myocardial Reperfusion Injury
;
drug therapy
;
Rats
;
Rats, Wistar
;
Toll-Like Receptor 4
;
metabolism
;
Transcription Factor RelA
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
4.Hydroxysafflor yellow A attenuate lipopolysaccharide-induced endothelium inflammatory injury.
Ming JIN ; Chun-Yan SUN ; Bao-Xia ZANG
Chinese journal of integrative medicine 2016;22(1):36-41
OBJECTIVEThis study observed attenuating effect of hydroxysafflor yellow A (HSYA), an effective ingredient of aqueous extract of Carthamus tinctorius L, on lipopolysaccharide (LPS)-induced endothelium inflammatory injury.
METHODSEahy926 human endothelium cell (EC) line was used; thiazolyl blue tetrazolium bromide (MTT) test was assayed to observe the viability of EC; Luciferase reporter gene assay was applied to measure nuclear factor-κB (NF-κB) p65 subunit nuclear binding activity in EC; Western blot technology was used to monitor mitogen activated protein kinase (MAPKs) and NF-κB activation. Reverse transcription polymerase chain reaction (RT-PCR) method was applied to observe intercellular cell adhesion molecule-1 (ICAM-1) and E-selectin mRNA level; EC surface ICAM-1 expression was measured with flow cytometry and leukocyte adhesion to EC was assayed with Rose Bengal spectrophotometry technology.
RESULTSHSYA protected EC viability against LPS-induced injury (P <0.05). LPS-induced NF-κB p65 subunit DNA binding (P <0.01) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) phosphorylation was inhibited by HSYA. HSYA attenuated LPS triggered ICAM-1 and E-selectin mRNA levels elevation and phosphorylation of p38 MAPK or c-Jun N-terminal kinase MAPK. HSYA also inhibited LPS-induced cell surface ICAM-1 protein expression P <0.01) and leukocyte adhesion to EC (P <0.05).
CONCLUSIONHSYA is effective to protect LPS-induced high expression of endothelium adhesive molecule and inflammatory signal transduction.
Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Cell Survival ; drug effects ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; therapeutic use ; E-Selectin ; genetics ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; pathology ; Humans ; I-kappa B Proteins ; metabolism ; Inflammation ; drug therapy ; pathology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Leukocytes ; cytology ; drug effects ; Lipopolysaccharides ; MAP Kinase Signaling System ; drug effects ; NF-KappaB Inhibitor alpha ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Protein Binding ; drug effects ; Quinones ; chemistry ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
5.Benzylideneacetophenone derivatives attenuate IFN-gamma-induced IP-10/CXCL10 production in orbital fibroblasts of patients with thyroid-associated ophthalmopathy through STAT-1 inhibition.
Sung Hee LEE ; Seul Ye LIM ; Ji Ha CHOI ; Jae Chul JUNG ; Seikwan OH ; Koung Hoon KOOK ; Youn Hee CHOI
Experimental & Molecular Medicine 2014;46(6):e100-
The aim of the present study was to identify a new candidate anti-inflammatory compound for use in the active stage of thyroid-associated ophthalmopathy (TAO). Benzylideneacetophenone compound JC3 [(2E)-3-(4-hydroxy-3-methoxyphenyl)phenylpro-2-en-l-one] was synthesized based on a structural modification of yakuchinone B, a constituent of the seeds of Alpinia oxyphylla, which belongs to the ginger family (Zingiberaceae), has been widely used in folk medicine as an anti-inflammatory phytochemical. Orbital fibroblasts were primarily cultured from patients with TAO, and the potential of JC3 to suppress the interferon (IFN)-gamma-induced protein (IP)-10/CXCL10 production in these cells was determined. IFN-gamma strongly increased the level of IP-10/CXCL10 in orbital fibroblasts from patients with TAO. JC3 exerted a significant inhibitory effect on the IFN-gamma-induced increase in IP-10/CXCL10 in a dose-dependent manner; its potency was greater than that of an identical concentration of yakuchinone B with no toxicity to cells at the concentration range used. Moreover, the constructed dimer and trimer polystructures of JC3, showed greater potency than JC3 in suppressing the IFN-gamma-induced production of IP-10/CXCL10. JC3 significantly attenuated the IP-10/CXCL10 mRNA expression induced by IFN-gamma, and a gel-shift assay showed that JC3 suppressed IFN-gamma-induced DNA binding of signal transducer and activator of transcription-1 (STAT-1) in TAO orbital fibroblasts. Our results provide initial evidence that the JC3 compound reduces the levels of IP-10/CXCL10 protein and mRNA induced by IFN-gamma in orbital fibroblasts of TAO patients. Therefore, JC3 might be considered as a future candidate for therapeutic application in TAO that exerts its effects by modulating the pathogenic mechanisms in orbital fibroblasts.
Cells, Cultured
;
Chalcone/chemical synthesis/*pharmacology
;
Chemokine CXCL10/genetics/*metabolism
;
Diarylheptanoids/chemistry/pharmacology
;
Fibroblasts/*drug effects/metabolism
;
Graves Ophthalmopathy/*metabolism
;
Humans
;
Interferon-gamma/*metabolism
;
Orbit/cytology
;
RNA, Messenger/genetics/metabolism
;
STAT1 Transcription Factor/genetics/*metabolism
6.Separation and evaluation of antioxidant constituents from Carthamus tinctorius.
Shi-Jun YUE ; Yu-Ping TANG ; Lin-Yan WANG ; Hao TANG ; Shu-Jiao LI ; Pei LIU ; Shu-Lan SU ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2014;39(17):3295-3300
Bio-active components from Carthamus tinctorius were separated on the basis of antioxidant capacities in vitro. The antioxidant capacity was investigated on the basis of the ability to scavenge DPPH radical, ABTS radical and reduce Fe3+ of different polar fractions. Furthermore, the chemical compounds were isolated from bio-active fraction, and were evaluated for the antioxidative effects. Five major components were isolated and identified from water extract as 6-hydroxykaempferol 3,6,7-tri-O-β-D-glucoside(1), 6-hydroxykaempferol 3-O-β-rutinoside-6-O-β-D-glucoside (2), 6-hydroxykaempferol 3-O-β-D-glucoside (3), hydroxysafflor yellow A (4) and anhydrosafflor yellow B (5). By evaluating and comparing the antioxidative effects of different fractions and obtained compounds, the results showed that water extract displayed significantly high antioxidative activities and 6-hydroxykaempferol glycosides and quinochalcone C-glycosides were found as main contribution for antioxidant property.
Antioxidants
;
isolation & purification
;
metabolism
;
pharmacology
;
Benzothiazoles
;
metabolism
;
Biphenyl Compounds
;
metabolism
;
Carthamus tinctorius
;
chemistry
;
Chalcone
;
analogs & derivatives
;
isolation & purification
;
metabolism
;
pharmacology
;
Ferric Compounds
;
metabolism
;
Free Radicals
;
metabolism
;
Kaempferols
;
isolation & purification
;
metabolism
;
pharmacology
;
Oxidation-Reduction
;
drug effects
;
Picrates
;
metabolism
;
Plant Extracts
;
isolation & purification
;
metabolism
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Quinones
;
isolation & purification
;
metabolism
;
pharmacology
;
Sulfonic Acids
;
metabolism
;
Water
;
chemistry
7.Effect of Hydroxy Safflower Yellow A on glucocorticoid-induced bone marrow mesenchymal stem cells osteogenic differentiation.
Tian WAN ; Min-Rui WU ; Zhen-Xi QI
China Journal of Orthopaedics and Traumatology 2014;27(3):224-228
OBJECTIVETo observe the effect of Hydroxy Safflower Yellow A (HSYA) on the expression of osteogenic markers, such as alkaline phosphatase, Cbf(alpha)l and type I collagen, and explore the mechanism of HSYA in the prevention and treatment of glucocorticoid-induced ischemic necrosis of femoral head.
METHODSFifteen healthy and adult New Zealand white rabbits were collected and weighted 0.9 to 1.3 kg. The rabbits were injected abdominally with anesthetic drugs, then received marrow cavity puncture of tibia and anterior superior iliac spine to get bone marrow blood. Rabbits bone marrow mesenchymal stem cells (BMSCs) were separated from the bone marrow blood, cultured in vitro and passaged. The 3rd generation of BMSCs which had good growth condition were randomly divided into blank group, model group and HSYA groups with different doses. The BMSCs in model group were treated with high dose of dexamethasone to induce adipogenic differentiation of cells cultured in vitro, and inhibit osteogenic differentiation. The BMSCs in HSYA groups received high dose of dexamethasone and different concentrations of HSYA simultaneously. The blank group received not any special handling. After a week,the expressions of alkaline phosphatase, Cbf(alpha)l and type I collagen mRNA were detected.
RESULTSThe alkaline phosphatase activity was significantly decreased in BMSCs of the model group as compared with the blank group (P < 0.01), and the expression of Cbf(alpha)l and type I collagen mRNA were also decreased significantly (P<0.01). The alkaline phosphatase activity was significantly increased in BMSCs of each HSYA group as compared with the model group (P < 0.05 or P < 0.01), and the expression of Cbf(alpha)l and type I collagen mRNA were also increased significantly (P < 0.05 or P < 0.01).
CONCLUSIONThe mechanism of HSYA may be related to the effect of antagonism to the reduced osteogenic differentiation induced by glucocorticoid.
Alkaline Phosphatase ; genetics ; metabolism ; Animals ; Bone Marrow Cells ; cytology ; drug effects ; metabolism ; Cell Differentiation ; drug effects ; Cells, Cultured ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; Collagen Type I ; genetics ; metabolism ; Core Binding Factor alpha Subunits ; genetics ; metabolism ; Drugs, Chinese Herbal ; chemistry ; pharmacology ; Female ; Glucocorticoids ; pharmacology ; Male ; Mesenchymal Stromal Cells ; cytology ; drug effects ; metabolism ; Osteogenesis ; drug effects ; Rabbits
8.The synergistic effect of amygdalin and HSYA on the IL-1beta induced endplate chondrocytes of rat intervertebral discs.
Kai NIU ; Yong-Jian ZHAO ; Lei ZHANG ; Chen-Guang LI ; Yong-Jun WANG ; Wei-Chao ZHENG
Acta Pharmaceutica Sinica 2014;49(8):1136-1142
The effect of amygdalin joint hydroxysafflor yellow A (HSYA) on the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and the possible mechanism were studied and explored. Chondrocytes were obtained from endplate of one-month SD rat intervertebral discs and cultured primary endplate chondrocytes. After identification, they were divided into normal group, induced group, amygdalin group, HSYA group and combined group. CCK-8 kit was adopted to detect the proliferation of the endplate chondrocytes. FCM was measured to detect the apoptosis. Real-time PCR method was adopted to observe the mRNA expression of Aggrecan, Col 2 alpha1, Col 10 alpha1, MMP-13 and the inflammatory cytokines IL-1beta. The protein expression of Col II, Col X was tested through immunofluorescence. Compared with the normal group, the proliferation of the endplate chondrocytes decreased while the apoptosis increased (P < 0.05). With down regulation of the mRNA expressions of Aggrecan, Col 2 alpha1 and up regulation of the mRNA expressions of Col 10 alpha1, MMP-13, IL-1beta (P < 0.05), the protein expression of Col II decreased while the protein expression of Col X increased. Compared with the induced group, amygdalin group, HSYA group, the combined group could inhibit the apoptosis and promote the proliferation (P < 0.05). They could increase the mRNA expressions of Aggrecan and Col 2 alpha1 while decrease the mRNA expressions of Col 10 alpha1, MMP-13 and IL-1beta (P < 0.05). They could also enhance the protein expression of Col II while reduce the protein expression of Col X. The effect of the combined group was significantly better than that of amygdalin and HSYA. Amygdalin joint HSYA could inhibit the degeneration of the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and better than the single use of amygdalin or HSYA.
Amygdalin
;
pharmacology
;
Animals
;
Apoptosis
;
Cells, Cultured
;
Chalcone
;
analogs & derivatives
;
pharmacology
;
Chondrocytes
;
drug effects
;
Collagen
;
metabolism
;
Drug Synergism
;
Interleukin-1beta
;
Intervertebral Disc
;
cytology
;
Quinones
;
pharmacology
;
Rats
9.Effect of safflor yellow injection on inhibiting lipopolysaccharide-induced pulmonary inflammatory injury in mice.
Ming JIN ; Chun-yan SUN ; Chong-qiang PEI ; Lin WANG ; Pei-cheng ZHANG
Chinese journal of integrative medicine 2013;19(11):836-843
OBJECTIVETo observe the effect of Safflor Yellow (SY) Injection on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice.
METHODSSeventy-two mice were divided into six groups: control (saline + saline); LPS (LPS + saline); SY Injection [LPS + SY (10, 20 or 40 mg/kg, intravenously)] and anisodamine (AD) (LPS + AD). Thirty minutes after SY or AD administration, 15 mg/kg LPS was given intraperitoneally. All animals were sacrificed 4 h after LPS injection. Arterial blood gas and lung water content index (LWCI) were measured. Lung tissue myeloperoxidase (MPO) activity was assayed. mRNA expression of inflammatory cytokines was assayed by reverse-transcription polymerase chain reaction. Lung morphological and nuclear factor (NF)-κB p65-positive cell changes were observed by HE and immunohistochemical staining. p38 mitogen-activated protein kinase (MAPK) phosphorylation was observed by Western blotting.
RESULTSAfter LPS administration, all animals displayed increased arterial carbon dioxide partial pressure (PaCO2) and decreased arterial oxygen partial pressure (PaO2), arterial oxygen saturation (SO2), HCO3 (-) concentration and pH, and increased LWCI, MPO activity, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α mRNA expression, NF-κB p65-positive staining and p38 MAPK activation compared with normal controls (all P<0.01). SY Injection significantly mitigated the LPS-induced increase in arterial PaCO and the decreases in arterial PaO2, SO2 and pH, and attenuated increases in LWCI and lung tissue MPO activity (all P<0.01). Moreover, SY Injection inhibited the increases in NF-κB p65 staining and in TNF-α, IL-1β and IL-6 mRNA expression (all P<0.01), and promoted the expression of the antiinflammatory cytokine IL-10 (P<0.05) following LPS injection. LPS-induced pulmonary p38 MAPK phosphorylation was suppressed by pretreatment with SY Injection (P<0.01).
CONCLUSIONSY Injection ameliorates inflammatory ALI induced by LPS in mice.
Animals ; Arteries ; drug effects ; pathology ; Blood Gas Analysis ; Chalcone ; administration & dosage ; analogs & derivatives ; chemistry ; pharmacology ; Chromatography, High Pressure Liquid ; Cytokines ; metabolism ; Enzyme Activation ; drug effects ; Injections ; Lipopolysaccharides ; Lung ; drug effects ; enzymology ; pathology ; Lung Injury ; complications ; drug therapy ; Male ; Mice ; Peroxidase ; metabolism ; Pneumonia ; complications ; drug therapy ; Transcription Factor RelA ; metabolism ; Water ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.Effect of safflor yellow B on vascular endothelial cells injury induced by angiotensin-II.
Chao-Yun WANG ; Shu-Ping ZHANG ; Yong XU ; Ming YANG ; Wen-Guo JIANG ; Hai-Yun LUAN
Acta Pharmaceutica Sinica 2012;47(6):811-815
This study is to investigate protective effect of safflor yellow B (SYB) against vascular endothelial cells (VECs) injury induced by angiotensin-II (Ang-II). VECs were cultured and divided into six groups: control group, Ang-II group, Ang-II + SYB (1 micromolL(-1)) group, Ang-II + SYB (10 micromolL(-1)) group, Ang-II + SYB (100 micromolL(-1)) group and Ang- II + verapamil (10 micromolL(-1)) group. Except control group, all of VECs in other groups were treated with Ang- II at the final concentration of 0.1 micromolL(-1). Mitochondria membrane potential (MMP) and free calcium concentration ([Ca2+]i) were measured by laser scanning confocal microscopy, and mitochondria complex IV activity was detected by BCA method. The levels of reactive oxygen species (ROS) in VECs were analyzed by fluorescence detector and apoptosis of VECs was observed by flow cytometer. Caspase 3 was determined by Western blotting method. Comparing with control group, Ang-II was able to increase [Ca2+]i and ROS level, decrease MMP level, inhibit complex IV activity and enhance caspase 3 activity in VECs, as a result, enhance apoptosis of VECs. But SYB could significantly reduce the result induced by Ang- II relying on different dosages (P < 0.05 or P < 0.01). SYB was able to eliminate the effect of Ang-II on VECs via regulating [Ca2+]i, mitochondrial structure and function and inhibiting apoptosis.
Angiotensin II
;
adverse effects
;
Antioxidants
;
isolation & purification
;
pharmacology
;
Apoptosis
;
drug effects
;
Calcium
;
metabolism
;
Carthamus tinctorius
;
chemistry
;
Caspase 3
;
metabolism
;
Cells, Cultured
;
Chalcone
;
analogs & derivatives
;
isolation & purification
;
pharmacology
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Electron Transport Complex IV
;
metabolism
;
Endothelial Cells
;
cytology
;
metabolism
;
Humans
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Proton-Translocating ATPases
;
metabolism
;
Plants, Medicinal
;
chemistry
;
Reactive Oxygen Species
;
metabolism
;
Vasoconstrictor Agents
;
adverse effects

Result Analysis
Print
Save
E-mail