1.Isolation and protection of organs at risk by crosslinked sodium hyaluronate gel during brachytherapy
Jianjian LIU ; Yan ZHANG ; Zhiwei CUI ; Dongfang WANG ; Xu LIU ; Shenglin YANG ; Qian CHAI ; Fenglin LIU
Chinese Journal of Tissue Engineering Research 2025;29(4):700-706
BACKGROUND:Crosslinked sodium hyaluronate gel has good mechanical property,biocompatibility,and biodegradability,and can be used as an isolated protective material in tumor radiation therapy to protect endangered organs from damage caused by excess radiation dose. OBJECTIVE:To investigate the safety and efficacy of crosslinked sodium hyaluronate gel in reducing the dose of radiation to dangerous organs during brachytherapy. METHODS:A total of 16 specific pathogen-free Kunming mice of the same age and similar body weight were selected as experimental subjects and divided into experimental group and control group by the random number table method,with 8 mice in each group.125I seeds were implanted subcutaneously in the back of mice in the experimental group,and then crosslinked sodium hyaluronate gel was injected around the radioactive particles.Only 125I seeds were implanted subcutaneously in the back of mice in the control group.After injection,the distance between the radioactive particles and the epidermis was measured by spiral CT scan,and the surface radiation dose was measured by radiation dosimeter.Within 10 weeks after injection,the growth state,survival rate,skin radiation damage,and gel retention of mice were observed. RESULTS AND CONCLUSION:(1)Spiral CT scan showed that the implanted gel was relatively concentrated and created an effective distance between the radioactive seeds and the epidermis.The body surface radiation dose of the experimental group was significantly lower than that of the control group(P<0.01).(2)During the experimental observation period,mice in both groups survived;mice in the control group showed obvious irritability and other unstable behavior in the late experimental period,and some mice in the experimental group showed similar behavior.The daily food intake of mice in the two groups had no significant change,and the body mass showed the same increasing trend.After implantation of radioactive seeds,the two groups of mice showed different degrees of radioactive skin injury.From day 23 after injection to the end of the experiment,the skin radiation injury score of the experimental group was lower than that of the control group(P<0.01).At week 10 after implantation,6 mice in the experimental group had no obvious gel residue under their skin,and 2 mice had a very small amount of scattered gel-like samples under their skin.(3)Therefore,the crosslinked sodium hyaluronate injection technique can increase the space between the radioactive target area of 125I seeds and the organ at risk outside the target through physical space occupying,which can effectively reduce the dose of the organ at risk,and play a role in the isolation and protection of the organ at risk.
2.Clinical efficacy of fecal microbiota transplantation based on syndrome element differentiation principle in the treatment of type 2 diabetes mellitus
Ruiting Chai ; Jinwen Shi ; Fangzhen Wu ; Zhaoyang Yang ; Candong Li
Digital Chinese Medicine 2025;8(3):363-378
Objective:
To investigate the therapeutic efficacy and potential mechanisms of fecal microbiota transplantation (FMT) in patients with type 2 diabetes mellitus (T2DM), and to preliminarily identify the traditional Chinese medicine (TCM) syndrome element characteristics of FMT in the treatment of T2DM.
Methods:
Between March 25, 2023 and September 30, 2024, T2DM patients who met the inclusion and exclusion criteria were enrolled at the Department of Rheumatology and Endocrinology of the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine. Participants received oral microbiota capsules as an adjunct to metformin therapy. Information obtained by four diagnostic methods of TCM, along with clinical and laboratory parameters, was collected before and after the intervention. Metagenomic sequencing was employed to analyze the gut microbiota, and Spearman correlation analysis was used to explore the relationship between laboratory indicators and differential bacterial genera. According to the post-treatment reduction in glycosylated hemoglobin (HbA1c), patients were categorized into a response (R) group and a non-response (NR) group. Treatment outcomes, safety indicators, gut microbiota changes, and TCM syndrome element features were compared between the two groups.
Results:
A total of 53 T2DM patients were included in the final analysis, and 30 patients were assigned to R group and 23 to NR group. After treatment, the R group exhibited significant reductions in HbA1c, fasting plasma glucose (FPG), and 2-hour postprandial glucose (2hPG) (P < 0.05 or P < 0.01). The NR group also showed significant decreases in HbA1c and FPG levels P < 0.01 or P < 0.05. Compared with the NR group, after treatment, FPG level in the R group demonstrated significant reductions (P < 0.01). As compared with before treatment, pancreatic islet function demonstrated enhancement in the R group, a significant increase in the 2-hour pastprandial C-peptide (2hC-P) levels in R group (P < 0.05), whereas no marked change was observed in the NR group. Regarding body composition indicators, the R group showed significantly lower waist-hip ratio (WHR), visceral fat (VF), and subcutaneous fat (SF) levels compared with the NR group (P < 0.01). After treatment, the NR group exhibited a significant elevation in aspartate aminotransferase (AST) levels (P < 0.05). Other safety-related indicators fluctuated within normal reference ranges, and no other adverse events, such as diarrhea, fever, or nausea, were reported. Metagenomic sequencing showed that FMT improved the diversity and richness of the gut microbiota, remodeling its overall structure. At the phylum level, the abundance of p_Firmicutes decreased significantly (P < 0.01), while the abundances of p_Bacteroidota and p_Proteobacteria increased significantly (P < 0.01). At the family level, among the 125 identified taxa, the abundances of f_Bacteroidaceae, f_Lactobacillaceae, and f_Sutterellaceae were significantly elevated, whereas six families, including f_Lachnospiraceae, f_Ruminococcaceae, and f_Coriobacteriaceae, were significantly decreased (all P < 0.05). Among the 367 taxa at the genus level, the top 10 differential genera showed significantly increased abundances of g_Bacteroides and g_Sutterella, and significantly decreased abundances in eight genera, including g_Faecalibacterium, g_Ruminococcus, g_Blautia, and g_Collinsella (all P < 0.05). Correlation analysis suggested that the phylum p_Bacillota was positively correlated with improvements in T2DM laboratory parameters, g_norank_f_Prevotellaceae was significantly positively correlated with fasting C-peptide (FC-P) and 2hC-P (P < 0.05). HbA1c demonstrated a significantly positive correlation with g_Blautia and g_Gemmiger (P < 0.05) and a significantly negative correlation with g_Bacteroides and g_Collinsella (P > 0.05). Analysis of syndrome element characteristics revealed that the R group was primarily characterized by pathological patterns of dampness, phlegm, and Yang deficiency. Before treatment, statistically significant reductions in syndrome element scores were observed for dampness, Yang deficiency, spleen, phlegm, Qi deficiency, Qi stagnation, and Yin deficiency (P < 0.01), as well as for heat and liver (P < 0.05). The NR group was mainly featured with Qi deficiency and Yin deficiency. Statistically significant changes in their syndrome element scores after treatment were noted for Qi deficiency (P < 0.01), and for spleen, Qi stagnation, liver, and blood deficiency (P < 0.05). In this group, the score changes for Yang deficiency, Yin deficiency, heat, and dampness were not statistically significant (P > 0.05).
Conclusion
The principles of syndrome element differentiation can be effectively applied to predict treatment efficacy and facilitate patient selection for FMT in the treatment of T2DM. Patients with T2DM presented with specific TCM syndrome element characteristics, notably dampness, phlegm, and Yang deficiency, represent a highly responsive population to FMT therapy.
3.Inhibitory effect of electroacupuncture on microglial activation via Notch1/Hes1 pathway in Parkinson's disease mice.
Jinxu JIANG ; Yang LIU ; Huijie FAN ; Tiansheng ZHANG ; Liran WANG ; Lei XU ; Lixia YANG ; Yunfei SONG ; Cungen MA ; Chongyao HAO ; Zhi CHAI
Chinese Acupuncture & Moxibustion 2025;45(9):1290-1298
OBJECTIVE:
To observe the effects of electroacupuncture (EA) on improving motor function and regulating microglial activation based on Notch receptor 1 (Notch1)/Hes family bHLH transcription factor 1 (Hes1) pathway in mice with Parkinson's disease (PD).
METHODS:
Thirty-six male C57BL/6 mice were randomly divided into a control group, a model group and an EA group, 12 mice in each group. PD model was established by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 consecutive days in the model group and the EA group. From the 1st day of modeling, EA was applied at "Baihui" (GV20) and bilateral "Shenshu" (BL23) in the EA group, with continuous wave, in frequency of 2 Hz and current of 2 mA, 15 min a time, once a day for 14 days continuously. The behavioral performance was evaluated by gait test, pole climbing test and hanging test, the number of positive cells of tyrosine hydroxylase (TH) and the co-expression positive cells of Notch1/ionized calcium binding adaptor molecule 1 (Iba-1) in the substantia nigra of midbrain was assessed by immunofluorescence, the protein expression of TH, α-synuclein (α-syn), Notch1, Hes1, Iba-1, inducible nitric oxide synthase (iNOS), Arginase-1 (ARG1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-10 was detected by Western blot, the mRNA expression of Notch1 and Hes1 was detected by real-time PCR.
RESULTS:
Compared with the control group, in the model group, the stride frequency was accelerated (P<0.001) and the stride length was shortened (P<0.001) for the four limbs, the pole climbing test time was prolonged (P<0.01) and the grip level was reduced (P<0.01); in the substantia nigra of midbrain, the number of positive cells of TH was decreased (P<0.001), the number of co-expression positive cells of Notch1/Iba-1 was increased (P<0.001), the protein expression of α-syn, Notch1, Hes1, Iba-1, iNOS, TNF-α, IL-1βand IL-6 was increased (P<0.01, P<0.05, P<0.001), the protein expression of TH, ARG1 and IL-10 was decreased (P<0.01, P<0.001), the mRNA expression of Notch1 and Hes1 was increased (P<0.01). Compared with the model group, in the EA group, the stride frequency was decelerated (P<0.001) and the stride length was increased (P<0.05, P<0.01, P<0.001) for the four limbs, the pole climbing test time was shortened (P<0.05) and the grip level was increased (P<0.05); in the substantia nigra of midbrain, the number of positive cells of TH was increased (P<0.01), the number of co-expression positive cells of Notch1/Iba-1 was decreased (P<0.001), the protein expression of α-syn, Notch1, Hes1, Iba-1, iNOS, TNF-α, IL-6 and IL-1β was decreased (P<0.05, P<0.01), the protein expression of TH, ARG1 and IL-10 was increased (P<0.05, P<0.001, P<0.01), the mRNA expression of Notch1 and Hes1 was decreased (P<0.05).
CONCLUSION
EA can improve the behavioral performance and protect the dopaminergic neurons in PD mice, its mechanism may relate to the inhibition of Notch1/Hes1-mediated neuroinflammation, thus inhibiting the microglial activation.
Animals
;
Electroacupuncture
;
Microglia/metabolism*
;
Male
;
Receptor, Notch1/metabolism*
;
Parkinson Disease/physiopathology*
;
Transcription Factor HES-1/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Humans
;
Signal Transduction
4.Advance on clinical and pharmacological research of Bawei Chenxiang Powder and related formulae.
Lu-Lu KANG ; Jia-Tong WANG ; Feng ZHOU ; Guo-Dong YANG ; Xiao-Juan LI ; Xiao-Li GAO ; Luobu GESANG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(10):2875-2882
Bawei Chenxiang Powder(BCP), first documented in the Tibetan medical work Four Medical Classics, has been widely applied in clinical practices in Tibetan and Mongolian medicines since its development. It has the effect of clearing the heart heat, calming the mind, and inducing resuscitation. On the basis of BCP, multiple types of formulae have been developed, such as Bawei Yiheyi Chenxiang Powder, Bawei Rang Chenxiang Powder, and Bawei Pingchuan Chenxiang Powder, which are widely used for treating cardiovascular and respiratory diseases. Current pharmacological research has revealed the pharmacological effects of BCP and its related formulae against myocardial ischemia, cerebral ischemia, renal ischemia, and anti-hypoxia. BCP and its related formulae introduced more treatment options for related clinical diseases and provided insights for fully comprehending the essence and pharmacological components of the formulae. This paper systematically reviewed the clinical and pharmacological research on BCP and its related formulae, analyzing the formulation principles and potential key flavors and active ingredients. This lays a fundamental scientific basis for the clinical use, quality evaluation, and subsequent development and application of BCP and its related formulae, providing references for studying traditional Chinese medicine formulae in a thorough and systematic manner.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Powders/chemistry*
;
Animals
;
Medicine, Chinese Traditional
5.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
6.Detection of motor intention in patients with consciousness disorder based on electroencephalogram and functional near infrared spectroscopy combined with motor brain-computer interface paradigm.
Xiaoke CHAI ; Nan WANG ; Jiuxiang SONG ; Yi YANG
Journal of Biomedical Engineering 2025;42(3):447-454
Clinical grading diagnosis of disorder of consciousness (DOC) patients relies on behavioral assessment, which has certain limitations. Combining multi-modal technologies and brain-computer interface (BCI) paradigms can assist in identifying patients with minimally conscious state (MCS) and vegetative state (VS). This study collected electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals under motor BCI paradigms from 14 DOC patients, who were divided into two groups based on clinical scores: 7 in the MCS group and 7 in the VS group. We calculated event-related desynchronization (ERD) and motor decoding accuracy to analyze the effectiveness of motor BCI paradigms in detecting consciousness states. The results showed that the classification accuracies for left-hand and right-hand movement tasks using EEG were 93.28% and 76.19% for the MCS and VS groups, respectively; the classification precisions using fNIRS were 53.72% and 49.11% for these groups. When combining EEG and fNIRS features, the classification accuracies for left-hand and right-hand movement tasks in the MCS and VS groups were 95.56% and 87.38%, respectively. Although there was no statistically significant difference in motor decoding accuracy between the two groups, significant differences in ERD were observed between different consciousness states during left-hand movement tasks ( P < 0.001). This study demonstrates that motor BCI paradigms can assist in assessing the level of consciousness, with EEG being more sensitive for evaluating residual motor intention intensity. Moreover, the ERD feature of motor intention intensity is more sensitive than BCI classification accuracy.
Humans
;
Brain-Computer Interfaces
;
Spectroscopy, Near-Infrared/methods*
;
Electroencephalography/methods*
;
Consciousness Disorders/diagnosis*
;
Male
;
Movement
;
Adult
;
Female
;
Intention
;
Persistent Vegetative State/diagnosis*
7.Effect of LINC00641 on Viability and Apoptosis of Acute Myeloid Leukemia Cells.
Yun-Ling ZHANG ; Ying YANG ; Yin SUN ; Hong-Li CHAI
Journal of Experimental Hematology 2025;33(4):998-1006
OBJECTIVE:
To investigate the effect of LINC00641 on the viability and apoptosis of acute myeloid leukemia (AML) cells and its mechanism.
METHODS:
RT-qPCR was applied to detect the relative expression levels of LINC00641, miR-204-5p, and MT1X in human normal bone marrow stromal cell lines HS-5 and AML cell lines, and to screen the optimal cell line THP-1 was screened for subsequent experiments. Bioinformatics, dual luciferase reporter assay, pull down assay, and RIP assay were applied to validate the targeting relationship between LINC00641, MT1X and miR-204-5p. EdU, CCK-8, flow cytometry, and Transwell assay were applied to detect cell proliferation, apoptosis, migration and invasion, respectively. Western blot was applied to detect the expression of MT1X , CyclinD1, Bcl-2, and Bax proteins.
RESULTS:
Compared with HS-5 cells, the expression of LINC00641 and MT1X was obviously increased in HL60, THP-1, U937, and KG1 cells, while the expression of miR-204-5p was obviously reduced (all P <0.05). THP-1 cells showed the most obvious changes (P <0.05). Silencing LINC00641 or overexpressing miR-204-5p was able to obviously inhibit the proliferation, migration and invasion of THP-1 cells, as well as the expression of CyclinD1 and Bcl-2 proteins, while promote cells apoptosis and Bax protein expression (all P <0.05). Bioinformatics analysis, dual luciferase reporter assay, pull down assay, and RIP assay all confirmed that there were targeted relationships between LINC00641, MT1X and miR-204-5p. Inhibiting miR-204-5p or overexpressing MT1X was able to respectively reverse the inhibitory effect of silencing LINC00641 or overexpressing miR-204-5p on THP-1 cells proliferation, migration and invasion, and reduce cells apoptosis.
CONCLUSION
LINC00641 is highly expressed in AML, and inhibition of LINC00641 expression can inhibit cell proliferation, migration, and invasion and increase apoptosis by regulating the miR-204-5p/MT1X axis.
Humans
;
Apoptosis
;
Leukemia, Myeloid, Acute/pathology*
;
MicroRNAs
;
Cell Proliferation
;
RNA, Long Noncoding/genetics*
;
Cell Movement
;
Cell Survival
;
Cell Line, Tumor
;
HL-60 Cells
8.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
9.Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: a long-term follow-up pilot study.
Zhao ZHANG ; Hua JIANG ; Li HUANG ; Sixi LIU ; Xiaoya ZHOU ; Yun CAI ; Ming LI ; Fei GAO ; Xiaoting LIANG ; Kam-Sze TSANG ; Guangfu CHEN ; Chui-Yan MA ; Yuet-Hung CHAI ; Hongsheng LIU ; Chen YANG ; Mo YANG ; Xiaoling ZHANG ; Shuo HAN ; Xin DU ; Ling CHEN ; Wuh-Liang HWU ; Jiacai ZHUO ; Qizhou LIAN
Protein & Cell 2025;16(1):16-27
Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre and early symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with postsymptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over 9 years. The most common adverse events (AEs) within 2 months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with postsymptomatic juvenile MLD.
Humans
;
Leukodystrophy, Metachromatic/genetics*
;
Pilot Projects
;
Genetic Therapy/methods*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Follow-Up Studies
;
Female
;
Lentivirus/genetics*
;
Child
;
Child, Preschool
;
Hematopoietic Stem Cells/metabolism*
;
Cerebroside-Sulfatase/metabolism*
;
Adolescent
10.Discovery of E0199: A novel compound targeting both peripheral NaV and KV7 channels to alleviate neuropathic pain.
Boxuan ZHANG ; Xiaoxing SHI ; Xingang LIU ; Yan LIU ; Xuedong LI ; Qi WANG ; Dongyang HUANG ; Weidong ZHAO ; Junru CUI ; Yawen CAO ; Xu CHAI ; Jiahao WANG ; Yang ZHANG ; Xiangyu WANG ; Qingzhong JIA
Journal of Pharmaceutical Analysis 2025;15(1):101132-101132
This research study focuses on addressing the limitations of current neuropathic pain (NP) treatments by developing a novel dual-target modulator, E0199, targeting both NaV1.7, NaV1.8, and NaV1.9 and KV7 channels, a crucial regulator in controlling NP symptoms. The objective of the study was to synthesize a compound capable of modulating these channels to alleviate NP. Through an experimental design involving both in vitro and in vivo methods, E0199 was tested for its efficacy on ion channels and its therapeutic potential in a chronic constriction injury (CCI) mouse model. The results demonstrated that E0199 significantly inhibited NaV1.7, NaV1.8, and NaV1.9 channels with a particularly low half maximal inhibitory concentration (IC50) for NaV1.9 by promoting sodium channel inactivation, and also effectively increased KV7.2/7.3, KV7.2, and KV7.5 channels, excluding KV7.1 by promoting potassium channel activation. This dual action significantly reduced the excitability of dorsal root ganglion neurons and alleviated pain hypersensitivity in mice at low doses, indicating a potent analgesic effect without affecting heart and skeletal muscle ion channels critically. The safety of E0199 was supported by neurobehavioral evaluations. Conclusively, E0199 represents a ground-breaking approach in NP treatment, showcasing the potential of dual-target small-molecule compounds in providing a more effective and safe therapeutic option for NP. This study introduces a promising direction for the future development of NP therapeutics.

Result Analysis
Print
Save
E-mail