1.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
2.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
3.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
4.Publication Trends in the Official Journals of Pediatric Dentistry Societies from 2004 to 2023
Joon Young KOO ; Yong Kwon CHAE ; Mi Sun KIM ; Ok Hyung NAM ; Sung Chul CHOI ; Hyo-Seol LEE
Journal of Korean Academy of Pediatric Dentistry 2025;52(1):46-60
This study explored the evolving trends in pediatric dentistry research, focusing on the changes in research trends in the Journal of the Korean Academy of Pediatric Dentistry (JKAPD) and comparing them with those in other international journals and previous studies. We selected the JKAPD (Korea), Pediatric Dentistry (PD, USA), European Archives of Paediatric Dentistry (EAPD, Europe), and The Japanese Journal of Pediatric Dentistry (JJPD, Japan) as subjects for this study, as each one is considered the core academic journals of the corresponding region. Data from the four journals were collected by reviewing articles published over 20 years from 2004 to 2023. Sixteen classification criteria were established, and 4,231 papers were assigned a classification number. This study included 1,205 studies from the JKAPD, 1,320 from the PD, 1,070 from the EAPD, and 636 from the JJPD. Publication trends were similar across the pediatric dental journals; however, the JJPD showed no correlation with other journals. Dental caries and prevention of dental caries were the most published topics in all journals (15.4%), followed by systemic diseases or patients with special health care needs (9.9%), conservative treatment and restorative materials (9.2%), and dental growth and developmental disturbances (8.8%). The thematic distribution of articles in the JKAPD observed in this study is consistent with that of previous studies. Although there were regional variations, the distribution of publication trends did not significantly change before or after the 21st century. This study offers valuable insights for comparing and analyzing trends in domestic and international research and providing an opportunity to examine which social and environmental changes have influenced these trends.
5.Publication Trends in the Official Journals of Pediatric Dentistry Societies from 2004 to 2023
Joon Young KOO ; Yong Kwon CHAE ; Mi Sun KIM ; Ok Hyung NAM ; Sung Chul CHOI ; Hyo-Seol LEE
Journal of Korean Academy of Pediatric Dentistry 2025;52(1):46-60
This study explored the evolving trends in pediatric dentistry research, focusing on the changes in research trends in the Journal of the Korean Academy of Pediatric Dentistry (JKAPD) and comparing them with those in other international journals and previous studies. We selected the JKAPD (Korea), Pediatric Dentistry (PD, USA), European Archives of Paediatric Dentistry (EAPD, Europe), and The Japanese Journal of Pediatric Dentistry (JJPD, Japan) as subjects for this study, as each one is considered the core academic journals of the corresponding region. Data from the four journals were collected by reviewing articles published over 20 years from 2004 to 2023. Sixteen classification criteria were established, and 4,231 papers were assigned a classification number. This study included 1,205 studies from the JKAPD, 1,320 from the PD, 1,070 from the EAPD, and 636 from the JJPD. Publication trends were similar across the pediatric dental journals; however, the JJPD showed no correlation with other journals. Dental caries and prevention of dental caries were the most published topics in all journals (15.4%), followed by systemic diseases or patients with special health care needs (9.9%), conservative treatment and restorative materials (9.2%), and dental growth and developmental disturbances (8.8%). The thematic distribution of articles in the JKAPD observed in this study is consistent with that of previous studies. Although there were regional variations, the distribution of publication trends did not significantly change before or after the 21st century. This study offers valuable insights for comparing and analyzing trends in domestic and international research and providing an opportunity to examine which social and environmental changes have influenced these trends.
6.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
7.Publication Trends in the Official Journals of Pediatric Dentistry Societies from 2004 to 2023
Joon Young KOO ; Yong Kwon CHAE ; Mi Sun KIM ; Ok Hyung NAM ; Sung Chul CHOI ; Hyo-Seol LEE
Journal of Korean Academy of Pediatric Dentistry 2025;52(1):46-60
This study explored the evolving trends in pediatric dentistry research, focusing on the changes in research trends in the Journal of the Korean Academy of Pediatric Dentistry (JKAPD) and comparing them with those in other international journals and previous studies. We selected the JKAPD (Korea), Pediatric Dentistry (PD, USA), European Archives of Paediatric Dentistry (EAPD, Europe), and The Japanese Journal of Pediatric Dentistry (JJPD, Japan) as subjects for this study, as each one is considered the core academic journals of the corresponding region. Data from the four journals were collected by reviewing articles published over 20 years from 2004 to 2023. Sixteen classification criteria were established, and 4,231 papers were assigned a classification number. This study included 1,205 studies from the JKAPD, 1,320 from the PD, 1,070 from the EAPD, and 636 from the JJPD. Publication trends were similar across the pediatric dental journals; however, the JJPD showed no correlation with other journals. Dental caries and prevention of dental caries were the most published topics in all journals (15.4%), followed by systemic diseases or patients with special health care needs (9.9%), conservative treatment and restorative materials (9.2%), and dental growth and developmental disturbances (8.8%). The thematic distribution of articles in the JKAPD observed in this study is consistent with that of previous studies. Although there were regional variations, the distribution of publication trends did not significantly change before or after the 21st century. This study offers valuable insights for comparing and analyzing trends in domestic and international research and providing an opportunity to examine which social and environmental changes have influenced these trends.
8.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
9.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
10.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.

Result Analysis
Print
Save
E-mail