1.The endovascular treatment strategies of cerebrovascular injuries in traumatic brain injury.
Shuo LENG ; Wentao LI ; Yu CAI ; Yi ZHANG
Chinese Journal of Traumatology 2025;28(2):81-90
Vasculature injury occurs rarely in traumatic brain injury but increases lifetime risk of ischemic or hemorrhage stroke. The diverse and nonspecific clinical manifestations make the diagnosis and treatment of these injuries highly challenging. With advancements in device design, endovascular treatments have become widely adopted, playing an increasingly vital role in the management of vascular diseases. The purpose of this review is to introduce and summarize endovascular treatments of traumatic cerebrovascular injury and other related pathological states after traumatic brain injury. Given the innovations of neuroendovascular devices and improvements in the techniques over the past decade, this review will outline several recent advancements in endovascular treatment strategies for cerebrovascular pathologies. Popularizing more treatment options to clinicians will benefit in dealing with a variety of clinical scenarios and reduce the overall morbidity of traumatic cerebrovascular injury.
Humans
;
Endovascular Procedures/methods*
;
Brain Injuries, Traumatic/complications*
;
Cerebrovascular Trauma/therapy*
2.The Combined Use of Cardiac Output and Intracranial Pressure Monitoring to Maintain Optimal Cerebral Perfusion Pressure and Minimize Complications for Severe Traumatic Brain Injury.
Korean Journal of Neurotrauma 2017;13(2):96-102
OBJECTIVE: To show the effect of dual monitoring including cardiac output (CO) and intracranial pressure (ICP) monitoring for severe traumatic brain injury (TBI) patiens. We hypothesized that meticulous treatment using dual monitoring is effective to sustain maintain minimal intensive care unit (ICU) complications and maintain optimal ICP and cerebral perfusion pressure (CPP) for severe TBI patiens. METHODS: We included severe TBI, below Glasgow Coma Scale (GCS) 8 and head abbreviation injury scale (AIS) >4 and performed decompressive craniectomy at trauma ICU of our hospital. We collected the demographic data, head AIS, injury severity score (ISS), initial GCS, ICU stay, sedation duration, fluid therapy related complications, Glasgow Outcome Scale (GOS) at 3 months and variable parameters of ICP and CO monitor. RESULTS: Thirty patients with severe TBI were initially selected. Thirteen patients were excluded because 10 patients had fixed pupillary reflexes and 3 patients had uncontrolled ICP due to severe brain edema. Overall 17 patients had head AIS 5 except 2 patients and 10 patients (58.8%) had multiple traumas as mean ISS 29.1. Overall complication rate of the patients was 64.7%. Among the parameters of CO monitoring, high stroke volume variation is associated with fluid therapy related complications (p=0.043) and low cardiac contractibility is associated with these complications (p=0.009) statistically. CONCLUSION: Combined use of CO and ICP monitors in severe TBI patients who could be necessary to decompressive craniectomy and postoperative sedation is good alternative methods to maintain an adequate ICP and CPP and reduce fluid therapy related complications during postoperative ICU care.
Brain Edema
;
Brain Injuries*
;
Cardiac Output*
;
Cerebrovascular Circulation*
;
Decompressive Craniectomy
;
Fluid Therapy
;
Glasgow Coma Scale
;
Glasgow Outcome Scale
;
Head
;
Humans
;
Injury Severity Score
;
Intensive Care Units
;
Intracranial Pressure*
;
Monitoring, Physiologic
;
Multiple Trauma
;
Reflex, Pupillary
;
Stroke Volume

Result Analysis
Print
Save
E-mail