1.Salvianolic Acid B and Ginsenoside Rg1 Combination Attenuates Cerebral Edema Accompanying Glymphatic Modulation.
Lingxiao ZHANG ; Yanan SHAO ; Zhao FANG ; Siqi CHEN ; Yixuan WANG ; Han SHA ; Yuhan ZHANG ; Linlin WANG ; Yi JIN ; Hao CHEN ; Baohong JIANG
Neuroscience Bulletin 2025;41(11):1909-1923
Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h. GS function was assessed by Evans blue imaging, near-infrared fluorescence region II (NIR-II) imaging, and magnetic resonance imaging (MRI). SalB/Rg1 had significant effects on reducing the infarct volume and hemorrhagic transformation score, improving neurobehavioral function, and protecting tissue structure, especially inhibiting cerebral edema. Meanwhile, the influx/efflux drainage of GS was enhanced by SalB/Rg1 according to NIR-II imaging and MRI. SalB/Rg1 inhibited matrix metalloproteinase-9 (MMP-9) activity, reduced cleaved β-dystroglycan (β-DG), and stabilized aquaporin-4 (AQP4) polarity, which was verified by colocalization with CD31. Our findings indicated that SalB/Rg1 treatment enhances GS function and attenuates cerebral edema, accompanying the regulation of the MMP9/β-DG/AQP4 pathway.
Animals
;
Ginsenosides/administration & dosage*
;
Brain Edema/etiology*
;
Male
;
Benzofurans/administration & dosage*
;
Glymphatic System/diagnostic imaging*
;
Mice
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Aquaporin 4/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Matrix Metalloproteinase 9/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Depsides
2.Fu's subcutaneous needling combined with scalp acupuncture for shoulder-hand syndrome phaseⅠafter cerebral infarction: a randomized controlled trial.
Lili WANG ; Bo LIU ; Xin HE ; Haoyu SHAN ; Yuman XUE ; Wei JING ; Jia LIU ; Wei JIANG ; Yuan WANG ; Wei CUI
Chinese Acupuncture & Moxibustion 2024;44(11):1239-1244
OBJECTIVE:
To compare the therapeutic effect of Fu's subcutaneous needling combined with scalp acupuncture and simple scalp acupuncture for shoulder-hand syndrome phase Ⅰ after cerebral infarction.
METHODS:
A total of 68 patients with shoulder-hand syndrome phase Ⅰ after cerebral infarction were randomized into a combination group (34 cases, 1 case dropped out) and a scalp acupuncture group (34 cases). Internal medicine treatment and conventional rehabilitation training were adopted in both groups. In the scalp acupuncture group, acupuncture was applied at parietal area and anterior parietal area of Yu's scalp acupuncture, electroacupuncture was connected for 30 min, with disperse-dense wave, in frequency of 2 Hz/100 Hz and in electric current of 1 mA, and the needles were retained for 6 h, once a day for continuous 14 days. On the basis of the treatment in the scalp acupuncture group, Fu's subcutaneous needling was applied at the affected muscles during needle retaining in the combination group, once a day in the first 3 days, once every other day in left days, 2-day interval was taken after 4-time treatment, for 14 days totally. Before and after treatment, the scores of the short form of McGill pain questionnaire (SF-MPQ), edema degree, guides to evaluation of permanent impairment (GEPI), and disabilities of the arm, shoulder and hand (DASH) were observed in the two groups, respectively, and the therapeutic effect was evaluated after treatment.
RESULTS:
After treatment, the scores of pain rating index (PRI), visual analogue scale (VAS) and present pain intensity (PPI), as well as the total scores of SF-MPQ were decreased compared with those before treatment in the two groups (P<0.05), and the above indexes in the combination group were lower than those in the scalp acupuncture group (P<0.05). After treatment, the scores of edema degree and DASH were decreased compared with those before treatment (P<0.05), while the GEPI scores were increased compared with those before treatment (P<0.05) in the two groups; in the combination group, the scores of edema degree and DASH were lower (P<0.05) while the GEPI score was higher (P<0.05) than those in the scalp acupuncture group. The total effective rate was 97.0% (32/33) in the combination group, which was superior to 91.2% (31/34) in the scalp acupuncture group (P<0.05).
CONCLUSION
Both Fu's subcutaneous needling combined with scalp acupuncture and simple scalp acupuncture can effectively relieve the shoulder joint pain and edema degree of hand, improve the upper limb function in patients with shoulder-hand syndrome phase Ⅰ after cerebral infarction, and the combination therapy has better therapeutic effect than simple scalp acupuncture.
Humans
;
Male
;
Female
;
Acupuncture Therapy/instrumentation*
;
Middle Aged
;
Cerebral Infarction/therapy*
;
Aged
;
Treatment Outcome
;
Scalp
;
Reflex Sympathetic Dystrophy/therapy*
;
Acupuncture Points
;
Adult
3.GAO Weibin's experience in treatment of cerebral infarction in the recovery period with "brain electric field" therapy.
Kexing NING ; Shaopeng LIU ; Lijun LIN ; Yang CUI ; Xuefeng JIAO ; Fei HUANG ; Zhongren SUN ; Hongna YIN
Chinese Acupuncture & Moxibustion 2024;44(11):1299-1303
The "brain electric field" therapy is a novel electroacupuncture method created by Professor GAO Weibin to treat cerebral infarction in the recovery period. This therapy is suitable for the treatment of motor disorders, sensory disorders, cognitive disorders, hemianopsia and bulbar paralysis during the recovery period of cerebral infarction. Based on the different symptoms, the corresponding brain functional areas are selected, supplemented with Taiyang 2, Tunyan 2, Tiyan, Gongxue and Xiatianzhu. These points are attached to electric acupuncture apparatus, and stimulated with dense wave, at frequency of 50 Hz and tolerable intensity. This therapy presents a remarkable effect on cerebral infarction in the recovery period, providing the new approach to the treatment of this disease.
Humans
;
Cerebral Infarction/therapy*
;
Electroacupuncture
;
Acupuncture Points
;
Brain/physiopathology*
;
Male
;
Middle Aged
;
Female
4.Molecular Mechanism of Electroacupuncture Regulating Cerebral Arterial Contractile Protein in Rats with Cerebral Infarction Based on MLCK Pathway.
Jing LI ; Min ZHANG ; Ying HE ; Yuan-Hao DU ; Xue-Zhu ZHANG ; Rainer GEORGI ; Bernhard KOLBERG ; Yan-Long XU
Chinese journal of integrative medicine 2023;29(1):61-68
OBJECTIVE:
To explore the effect of electroacupuncture (EA) intervention on the vasoconstriction of cerebral artery smooth muscle cells after cerebral infarction.
METHODS:
Male Wistar rats were randomly divided into 3 groups by a random number table: the model group (n=24), the EA group (n=24), and the normal group (n=6). The model and the EA groups were divided into different time subgroups at 0.5, 1, 3, and 6 h after middle cerebral artery occlusion (MCAO), with 6 rats in each subgroup. MCAO model was established using intraluminal suture occlusion method. The EA group was given EA treatment at acupoint Shuigou (GV 26) instantly after MCAO for 20 min. The contents of cerebrovascular smooth muscle MLCK, the 3 subunits of myosin light chain phosphatase (MLCP) MYPT1, PP1c-δ and M20, as well as myosin-ATPase activity were detected using immunohistochemistry and Western blotting.
RESULTS:
The overall expression level of the MYPT1 and PP1c-δ in the model group was significantly higher (P<0.01). After EA intervention, the 0.5 h group expression level was close to that of the normal group (P>0.05), and the other subgroups were still significantly higher than the normal group (P<0.01). After EA intervention, the expression level of each subgroup was significantly lower than the corresponding model group. There was a significant difference between the 0.5 and 1 h subgroups (P<0.01), while a difference was also observed between the 3 and 6 h subgroups (P<0.05). The dynamic change rule gradually increased with the prolongation of infarction time within 6 h after infarction.
CONCLUSION
EA intervention can inhibit contraction of cerebral vascular smooth muscle cells and regulate smooth muscle relaxation by regulating MLCK pathway.
Rats
;
Male
;
Animals
;
Rats, Wistar
;
Electroacupuncture
;
Cerebral Infarction/metabolism*
;
Muscle, Smooth
;
Acupuncture Points
;
Brain Ischemia/therapy*
5.Research progress on the roles of neurovascular unit in stroke-induced immunosuppression.
Mengqin ZHOU ; Peng SU ; Jingyan LIANG ; Tianqing XIONG
Journal of Zhejiang University. Medical sciences 2023;52(5):662-672
A complex pathophysiological mechanism is involved in brain injury following cerebral infarction. The neurovascular unit (NVU) is a complex multi-cellular structure consisting of neurons, endothelial cells, pericyte, astrocyte, microglia and extracellular matrix, etc. The dyshomeostasis of NVU directly participates in the regulation of inflammatory immune process. The components of NVU promote inflammatory overreaction and synergize with the overactivation of autonomic nervous system to initiate stroke-induced immunodepression (SIID). SIID can alleviate the damage caused by inflammation, however, it also makes stroke patients more susceptible to infection, leading to systemic damage. This article reviews the mechanism of SIID and the roles of NVU in SIID, to provide a perspective for reperfusion, prognosis and immunomodulatory therapy of cerebral infarction.
Humans
;
Endothelial Cells
;
Stroke
;
Neurons/physiology*
;
Immunosuppression Therapy/adverse effects*
;
Cerebral Infarction
6.Effects of electroacupuncture on NLRP3/Caspase-1/GSDMD axis and neurological function in rats with cerebral ischemic reperfusion.
Xiao-Fang YOU ; Wan-Qing LIN ; Ping-Ping LI ; Yong-Jie ZHENG ; Bin CHEN
Chinese Acupuncture & Moxibustion 2023;43(6):661-668
OBJECTIVE:
To investigate the neuroprotective effect of electroacupuncture (EA) at "Quchi" (LI 11) and "Zusanli" (ST 36) in the rats with cerebral ischemic reperfusion and the potential mechanism of microglia pyroptosis.
METHODS:
Sixty SD rats were randomly divided into a sham-operation group, a model group and an EA group, with 20 rats in each group. The Zea Longa method was employed to establish the rat model of the middle cerebral artery occlusion and reperfusion (MACO/R) in the left brain. In the EA group, since the 2nd day of modeling, EA was given at "Quchi" (LI 11) and "Zusanli" (ST 36) of right side with disperse-dense wave, 4 Hz/20 Hz in frequency and 0.2 mA in current intensity, 30 min each time, once a day for lasting 7 consecutive days. The reduction rate of cerebral blood flow was measured with laser Doppler flowmetry during operation. The neurological function of rats was observed using Zea Longa neurobehavioral score. The cerebral infarction volume was detected by TTC staining method. The microglia positive expression in the ischemic side of the cortex was detected with the immunofluorescence method. Under transmission electron microscope, the ultrastructure of cell in the ischemic cortex was observed. The mRNA expression levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cysteinyl aspartate specific proteinase-1 (Caspase-1) and gasdermin D (GSDMD) in the ischemic cortex were detected using real-time PCR.
RESULTS:
Compared with the sham-operation group, in the model group, the reduction rate of cerebral blood flow was increased during operation (P<0.001); Zea Longa neurobehavional score and the percentage of cerebral infarction volume were increased (P<0.001), the numbers of M1-type microglia marked by CD68+ and M2-type microglia marked by TMEM119+ were elevated in the ischemic cortex (P<0.001), the mRNA expression of NLRP3, ASC, Caspase-1 and GSDMD was increased (P<0.001, P<0.01); the cytomembrane structure was destroyed, with more cell membrane pores formed in the ischemic cortex. Compared with the model group, after intervention, Zea Longa neurobehavioral score and the percentage of cerebral infarction volume were reduced (P<0.05), the number of M1-type microglia marked by CD68+ was reduced (P<0.05) and the number of M2-type microglia marked by TMEM119+ was increased (P<0.05); and the mRNA expression of NLRP3, ASC, Caspase-1 and GSDMD was decreased (P<0.01, P<0.05) in the EA group. Even though the cytomembrane structure was incomplete, there were less membrane pores presented in the ischemic cortex in the EA group after intervention.
CONCLUSION
The intervention with EA attenuates the neurological dysfunction and reduces the volume of cerebral infarction in the rats with cerebral ischemic reperfusion. The underlying mechanism is related to the inhibition of microglia pyroptosis through modulating NLRP3/Caspase-1/GSDMD axis.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Caspase 1/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Electroacupuncture
;
Cerebral Infarction/therapy*
;
RNA, Messenger
7.Effect of Tongdu Tiaoshen electroacupuncture pretreatment on PPARγ-mediated pyroptosis of cerebral cortex in rats with cerebral ischemia reperfusion injury.
Ting-Ting TONG ; Ying WANG ; Kui-Wu LI ; Li-da ZHANG ; Xiao-Qing WU ; Jun-Li WANG ; Cheng-Long LI ; Guo-Qing ZHANG ; Jun-Yu ZHANG ; Wei HAN
Chinese Acupuncture & Moxibustion 2023;43(7):783-792
OBJECTIVE:
To observe the effect of Tongdu Tiaoshen (promoting the circulation of the governor vessel and regulating the spirit) electroacupuncture (EA) pretreatment on pyroptosis mediated by peroxisome proliferators-activated receptor γ (PPARγ) of the cerebral cortex in rats with cerebral ischemia reperfusion injury (CIRI) and explore the potential mechanism of EA for the prevention and treatment of CIRI.
METHODS:
A total of 110 clean-grade male SD rats were randomly divided into a sham-operation group, a model group, an EA group, an EA + inhibitor group and an agonist group, 22 rats in each group. In the EA group, before modeling, EA was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14), with disperse-dense wave, 2 Hz/5 Hz in frequency, 1 to 2 mA in intensity, lasting 20 min; once a day, consecutively for 7 days. On the base of the intervention as the EA group, on the day 7, the intraperitoneal injection with the PPARγ inhibitor, GW9662 (10 mg/kg) was delivered in the EA + inhibitor group. In the agonist group, on the day 7, the PPARγ agonist, pioglitazone hydrochloride (10 mg/kg) was injected intraperitoneally. At the end of intervention, except the sham-operation group, the modified thread embolization method was adopted to establish the right CIRI model in the rats of the other groups. Using the score of the modified neurological severity score (mNSS), the neurological defect condition of rats was evaluated. TTC staining was adopted to detect the relative cerebral infarction volume of rat, TUNEL staining was used to detect apoptosis of cerebral cortical nerve cells and the transmission electron microscope was used to observe pyroptosis of cerebral cortical neural cells. The positive expression of PPARγ and nucleotide-binding to oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex was detected with the immunofluorescence staining. The protein expression of PPARγ, NLRP3, cysteinyl aspartate specific protease-1 (caspase-1), gasdermin D (GSDMD) and GSDMD-N terminal (GSDMD-N) in the cerebral cortex was detected with Western blot. Using the quantitative real-time fluorescence-PCR, the mRNA expression of PPARγ, NLRP3, caspase-1 and GSDMD of the cerebral cortex was detected. The contents of interleukin (IL)-1β and IL-18 in the cerebral cortex of rats were determined by ELISA.
RESULTS:
Compared with the sham-operation group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.01), pyroptosis was severe, the protein and mRNA expression levels of PPARγ, NLRP3, caspase-1 and GSDMD were elevated (P<0.01); and the protein expression of GSDMD-N and contents of IL-1β and IL-18 were increased (P<0.01) in the model group. When compared with the model group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01) in the EA group and the agonist group; while, in the EA + inhibitor group, the protein expression of PPARγ was increased (P<0.01), the protein and mRNA expression levels of NLRP3 and GSDMD were decreased (P<0.01, P<0.05), the mRNA expression of caspase-1 was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01). When compared with the EA + inhibitor group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.05, P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were declined (P<0.01) in the EA group. Compared with the agonist group, in the EA group, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.05, P<0.01), the mRNA expression of PPARγ was decreased (P<0.01) and the protein expression of GSDMD-N was elevated (P<0.05); and the contents of IL-1β and IL-18 were higher (P<0.01).
CONCLUSION
Tongdu Tiaoshen EA pretreatment can attenuate the neurological impairment in the rats with CIRI, and the underlying mechanism is related to the up-regulation of PPARγ inducing the inhibition of NLRP3 in the cerebral cortex of rats so that pyroptosis is affected.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
PPAR gamma/genetics*
;
Pyroptosis
;
Interleukin-18
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Cerebral Cortex
;
Cerebral Infarction/therapy*
;
Caspases
;
RNA, Messenger
8.CiteSpace knowledge map analysis of Angong Niuhuang Pills in recent twenty years.
Xue BAI ; Fei-Fei GUO ; Lin TONG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2023;48(5):1381-1392
Angong Niuhuang Pills, a classical formula in traditional Chinese medicine, are lauded as one of the "three treasures of febrile diseases" and have been widely used in the treatment of diverse disorders with definite efficacy. However, there is still a lack of bibliometric analysis of research progress and development trend regarding Angong Niuhuang Pills. Research articles on Angong Niuhuang Pills in China and abroad(2000-2022) were retrieved from CNKI and Web of Science. CiteSpace 6.1 was used to visualize the key contents of the research articles. In addition, the research status of Angong Niuhuang Pills was analyzed by information extraction to allow insight into the research trends and hotspots about Angong Niuhuang Pills. A total of 460 Chinese articles and 41 English articles were included. Beijing University of Chinese Medicine and Sun Yat-Sen University were the research institutions that have published the largest amount of research articles in Chinese and English. The keyword analysis showed that the Chinese articles focused on cerebral hemorrhage, stroke, neurological function, coma, cerebral infarction, craniocerebral injury, and clinical application, while the English articles focused on the mechanisms of cerebral ischemia, stroke, heavy metal, blood-brain barrier, and oxidative stress. Stroke, blood-brain barrier, and oxidative stress were presumably the research hotspots in the future. At present, the research on Angong Niuhuang Pills is still in the developing stage. It is necessary to highlight the in-depth research on the active components and mechanism of action and carry out large-scale randomized controlled clinical trials to provide references for the further development and application of Angong Niuhuang Pills.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Stroke/drug therapy*
;
Medicine, Chinese Traditional
;
Brain Ischemia/drug therapy*
;
Cerebral Infarction/drug therapy*
9.Acute cerebral infarction following extracorporeal membrane oxygenation treatment in patients with cardiogenic shock: 2 cases report and review of the literature.
Ying LIU ; Qian ZHANG ; Jia YUAN ; Xianjun CHEN ; Junling TAO ; Bowen CHEN ; Wei ZHAO ; Guangsu LI ; Yehong LI ; Di LIU
Chinese Critical Care Medicine 2023;35(12):1286-1290
OBJECTIVE:
To explore the diagnosis and treatment of acute cerebral infarction following extracorporeal membrane oxygenation (ECMO) therapy in patients with cardiogenic shock to review the literature.
METHODS:
The clinical data of two patients with cardiogenic shock treated with veno-arterial ECMO (VA-ECMO) complicated with acute cerebral infarction admitted to department of intensive care unit (ICU) of Affiliated Hospital of Guizhou Medical University were retrospectively analyzed and the treatment experience was shared.
RESULTS:
Case 1 was a 46-year-old male patient who was admitted to the hospital on September 16, 2021, due to "repeated chest tightness, shortness of breath, syncope for 2+ years, and worsened for 15 days. Coronary artery angiography showed 3-vessel coronary artery disease lesions. On October 15, 2021, coronary artery bypass grafting (CABG), pericardial fenestration and drainage, thoracic closed drainage, femoral bypass, thoracotomy exploration, and sternal internal fixation were performed under support of extracorporeal circulation. After surgery, the heart rate was 180-200 bpm, the blood pressure could not be maintained, and the improvement was not obvious after active drug treatment. The right femoral artery and femoral vein were intubated, VA-ECMO support treatment was performed, and the patient was transferred to the ICU. Intra-aortic balloon pump (IABP) was treated on the day of transfer because the circulation could not be maintained. Due to acute cerebral infarction in the left hemisphere and right parieto-occipital lobe, subfalcine herniation, tentorial herniation, the patient ultimately died after withdrawing from ECMO. Case 2 was a 43-year-old male patient who was admitted to the hospital on June 29, 2021, with "fever for 8 days and vomiting for 4 days". Bedside ultrasound showed cardiac enlargement and diffuse wall motion reduction in the left and right ventricles. On June 30, 2021, the patient underwent catheterization through the right femoral artery and femoral vein, VA-ECMO support, and was transferred to ICU for treatment. Acute cerebral infarction on both sides of the cerebellum occurred, and after treatment, the patient was discharged with mild impairment of daily living ability.
CONCLUSIONS
Strengthen monitoring of anticoagulation; regular neurological examination of patients undergoing ECMO therapy; ECMO under light sedation or awake can be performed if the condition permitsif the condition permits, perform light sedation or awake ECMO, which helpful for the early detection of nervous system injury.
Male
;
Humans
;
Middle Aged
;
Adult
;
Shock, Cardiogenic/therapy*
;
Extracorporeal Membrane Oxygenation
;
Retrospective Studies
;
Coronary Artery Bypass/adverse effects*
;
Cerebral Infarction/therapy*
10.Effects of electro-scalp acupuncture on inflammatory response and microglial polarization in the ischemic cortex of rats with ischemic stroke.
Xiao-Yun PENG ; Bo YUAN ; Tian TIAN ; Wen-Jun LUO ; Ling-Gui ZHU ; Yan-Ju ZHANG ; Ying LI ; Xiao-Zheng DU ; Jin-Hai WANG
Chinese Acupuncture & Moxibustion 2023;43(9):1050-1055
OBJECTIVE:
To observe the effects of electro-scalp acupuncture (ESA) on the expression of microglial markers CD206 and CD32, as well as interleukin (IL)-6, IL-1β, and IL-10 in the ischemic cortex of rats with ischemic stroke, and to explore the mechanisms of ESA on alleviating inflammatory damage of ischemic stroke.
METHODS:
Sixty 7-week-old male SD rats were randomly selected, with 15 rats assigned to a sham surgery group. The remaining rats were treated with suture method to establish rat model of middle cerebral artery occlusion (MCAO). The rats with successful model were randomly divided into a model group, a VitD3 group, and an ESA group, with 15 rats in each group. In the ESA group, ESA was performed bilaterally at the "top-temporal anterior oblique line" with disperse-dense wave, a frequency of 2 Hz/100 Hz, and an intensity of 1 mA. Each session lasted for 30 min, once daily, for a total of 7 days. The VitD3 group were treated with intragastric administration of 1,25-dihydroxyvitamin D3 (1,25-VitD3) solution (3 ng/100 g), once daily for 7 days. The neurological deficit scores and neurobehavioral scores were assessed before and after the intervention. After the intervention, the brain infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Immunofluorescence double staining was performed to detect the protein expression of CD32 and CD206 in the ischemic cortex. Western blot analysis was conducted to measure the protein expression of IL-6, IL-1β, and IL-10 in the ischemic cortex.
RESULTS:
Compared with the sham surgery group, the model group showed increased neurological deficit scores and neurobehavioral scores (P<0.01), increased brain infarct volume (P<0.01), increased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and decreased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the model group, both the ESA group and the VitD3 group showed decreased neurological deficit scores and neurobehavioral scores (P<0.01), reduced brain infarct volume (P<0.01), decreased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and increased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the VitD3 group, the ESA group had lower neurological deficit score (P<0.05), larger brain infarct volume (P< 0.05), and lower protein expression of CD32, CD206, IL-1β, and IL-10 in the ischemic cortex (P<0.01, P<0.05).
CONCLUSION
ESA could improve neurological function in MCAO rats, and its mechanism may be related to promoting microglial M1-to-M2 polarization and alleviating inflammatory damage.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Ischemic Stroke
;
Interleukin-10
;
Interleukin-6/genetics*
;
Microglia
;
Scalp
;
Acupuncture Therapy
;
Vitamins
;
Infarction, Middle Cerebral Artery

Result Analysis
Print
Save
E-mail