1.Circular RNA hsa_circ_0087893 participates in intraventricular hemorrhage occurrence and progression possibly as a competitive endogenous RNA in preterm infants.
Rujuan CHEN ; Wei WU ; Yinping QIU
Journal of Southern Medical University 2023;43(5):749-754
OBJECTIVE:
To screen for differentially expressed circular RNAs (circRNAs) in the serum of preterm infants with intraventricular hemorrhage (IVH) and explore the competitive endogenous RNA (ceRNA) mechanism of circRNAs in IVH in these infants.
METHODS:
Fifty preterm infants (gestational age of 28 to 34 weeks) admitted in our department between January, 2019 and January, 2020 were enrolled in this study, including 25 with a MRI diagnosis of IVH and 25 without IVH. Serum samples were collected from 3 randomly selected infants from each group for profiling differentially expressed circRNAs using circRNA array technique. Gene ontology (GO) and pathway analyses were performed to reveal the function of the identified circRNAs. The circRNA-miRNA-mRNA network was constructed to identify the co-expression network of hsa_circ_ 0087893.
RESULTS:
A total of 121 differentially expressed circRNAs were identified in the infants with IVH, including 62 up-regulated and 59 down-regulated circRNAs. GO and pathway analyses showed that these circRNAs were involved in multiple biological processes and pathways, including cell proliferation, activation and death, DNA damage and repair, retinol metabolism, sphingolipid metabolism, cell adhesion molecules. Among these circRNAs, hsa_circ_0087893 was found to have significant down-regulation in IVH group and co-express with 41 miRNAs and 15 mRNAs (such as miR-214-3p, miR-761, miR-183-5p, AKR1B1, KRT34, PPP2CB, and HPRT1).
CONCLUSION
The circRNA hsa_circ_0087893 may function as a ceRNA and play an important role in the occurrence and progression of IVH in preterm infants.
Infant, Newborn
;
Infant
;
Humans
;
RNA, Circular
;
Infant, Premature
;
MicroRNAs
;
RNA, Messenger
;
Cerebral Hemorrhage/genetics*
;
Aldehyde Reductase
2.Association between gut microbiome and intracerebral hemorrhage based on genome-wide association study data.
Dihui LIN ; Xinpeng LIU ; Qi LI ; Jiabi QIN ; Zhendong XIONG ; Xinrui WU
Journal of Central South University(Medical Sciences) 2023;48(8):1176-1184
OBJECTIVES:
Intracerebral hemorrhage (ICH) has the highest mortality and disability rates among various subtypes of stroke. Previous studies have shown that the gut microbiome (GM) is closely related to the risk factors and pathological basis of ICH. This study aims to explore the causal effect of GM on ICH and the potential mechanisms.
METHODS:
Genome wide association study (GWAS) data on GM and ICH were obtained from Microbiome Genome and International Stroke Genetics Consortium. Based on the GWAS data, we first performed Mendelian randomization (MR) analysis to evaluate the causal association between GM and ICH. Then, a conditional false discovery rate (cFDR) method was conducted to identify the pleiotropic variants.
RESULTS:
MR analysis showed that Pasteurellales, Pasteurellaceae, and Haemophilus were negatively correlated with the risk of ICH, whileVerrucomicrobiae, Verrucomicrobiales, Verrucomicrobiaceae, Akkermansia, Holdemanella, and LachnospiraceaeUCG010 were positively correlated with ICH. By applying the cFDR method, 3 pleiotropic loci (rs331083, rs4315115, and rs12553325) were found to be associated with both GM and ICH.
CONCLUSIONS
There is a causal association and pleiotropic variants between GM and ICH.
Humans
;
Genome-Wide Association Study
;
Gastrointestinal Microbiome/genetics*
;
Genetic Predisposition to Disease
;
Cerebral Hemorrhage/genetics*
;
Stroke
3.Mechanism of Zhongfeng Xingnao Decoction in improving microcirculatory disorders in cerebral hemorrhage based on network pharmacology and molecular docking techniques.
Xiao-Qin ZHONG ; Da-Feng HU ; Yu WANG ; Zhen-Qiu NING ; Min-Zhen DENG
China Journal of Chinese Materia Medica 2023;48(22):6115-6127
This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.
Animals
;
Mice
;
Tumor Suppressor Protein p53
;
Proto-Oncogene Proteins c-akt
;
Molecular Docking Simulation
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Microcirculation
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor Necrosis Factor-alpha
;
ErbB Receptors
;
Cerebral Hemorrhage/drug therapy*
;
Neoplasms
;
Phosphatidylinositols
;
Drugs, Chinese Herbal/pharmacology*
4.Effects of butyphthalide on microglia polarization after intracerebral hemorrhage and the underlying mechanisms.
Yiliu ZHANG ; Wei LU ; Niangui XU
Journal of Central South University(Medical Sciences) 2022;47(6):717-729
OBJECTIVES:
Because intracerebral hemorrhage (ICH) has high morbidity, disability and mortality, it is significant to find new and effective treatments for ICH. This study aims to explore the effect of butyphthalide (NBP) on neuroinflammation secondary to ICH and microglia polarization.
METHODS:
A total of 48 healthy male SD rats were randomly divided into 6 groups: a sham 24 h group, a sham 72 h group, an ICH 24 h group, an ICH 72 h group, an ICH+NBP 24 h group, and an ICH+NBP 72 h group (8 rats per group). After operation, the neurological deficiencies were assessed based on improved Garcia scores and corner test. The expressions of Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), aquaporin-4 (AQP4), zonula occludens-1 (ZO-1), occludin, CD68, CD86, and CD206 were observed by Western blotting. Inflammatory cytokines were detected by ELISA. The immunofluorescence was to detect the polarization of microglia.
RESULTS:
1) Compared with the sham groups, the expression of TLR4 (24 h: P<0.05; 72 h: P<0.01), NF-κB (both P<0.01) and Nrf2 (both P<0.01) in the perihematoma of the ICH group was increased, leading to microglia activation (P<0.01). The expressions of IL-6 (24 h: P<0.05; 72 h: P<0.01) and TNF-α (both P<0.01), the pro-inflammatory cytokines were up-regulated, and the expression of anti-inflammatory cytokine IL-4 was down-regulated (both P<0.01). Besides, the expression of AQP4 was enhanced (both P<0.01). The protein level of tightly connected proteins (including ZO-1, occludin) was decreased (all P<0.01). The neurological function of the rats in the ICH group was impaired in the 2 time points (both P<0.01). 2) Compared with the sham group at 24 h and 72 h after the intervention of NBP, the expressions of TLR4 (both P<0.05) and NF-κB (both P<0.01) were significantly declined, and the expression of Nrf2 was further enhanced (both P<0.05) in the perihematoma of the ICH+NBP group. Furthermore, the expression of M1 microglia marker was inhibited (P<0.05), and the polarization of microglia to the M2 phenotype was promoted (P<0.01). 3) In terms of inflammation after ICH, the IL-4 expression in the ICH+NBP group was increased compared with the ICH group (24 h: P<0.05; 72 h: P<0.01); the expression of IL-6 was decreased significantly in the ICH+NBP 72 h group (P<0.01); the level of AQP4 was declined significantly in the ICH+NBP 24 h group (P<0.05), there was a downward trend in the 72-hour intervention group but without significant statistical difference. 4) Compared with the ICH group, the ZO-1 protein levels were increased (24 h: P<0.05; 72 h: P<0.01), and the symptoms of nerve defect were improved eventually (both P<0.05) in the ICH+NBP groups.
CONCLUSIONS
After ICH, the TLR4/NF-κB pathway is activated. The M1 microglia is up-regulated along with the release of detrimental cytokines, while the anti-inflammatory cytokines are down-regulated. The expression of AQP4 is increased, the tight junction proteins from the blood-brain barrier (BBB) is damaged, and the neurological function of rats is impaired. On the contrary, NBP may regulate microglia polarization to M2 phenotype and play a role in the neuroprotective effect mediated via inhibiting TLR4/NF-κB and enhancing Nrf2 pathways, which relieves the neuroinflammation, inhibits the expression of AQP4, repairs BBB, and improves neurological functional defects.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Cerebral Hemorrhage
;
Cytokines/metabolism*
;
Interleukin-4/therapeutic use*
;
Interleukin-6/metabolism*
;
Male
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
NF-kappa B/metabolism*
;
Occludin/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 4/genetics*
5.Association of CETP gene I405V/D442G polymorphisms with cerebral hemorrhage and serum lipid profile in ethnic Han population from Changsha.
Xiaoyu XU ; Xiaoyu ZHENG ; Fuping JIE ; Yi ZENG ; Le ZHANG
Chinese Journal of Medical Genetics 2016;33(1):91-96
OBJECTIVETo assess the association between I405V and D442G polymorphisms of the CETP gene with cerebral hemorrhage (CH) and a related lipid profile among ethnic Han Chinese from Changsha.
METHODSA case-control study was carried out, which enrolled 170 cerebral hemorrhage patients and 191 ethnicity-, age- and sex-matched health controls. Polymerase chain reaction-restricted fragments length polymorphism (PCR-RFLP) was used to determine the polymorphisms. Lipid profile was determined by means of oxidase method. Statistic analyses were performed with SPSS 16.0.
RESULTSNo significant difference was found in the CETP gene I405V and D442G genotypes and allelic distribution between the CH patients and controls (P>0.05). There was no association between CETP gene I405V polymorphism and lipid profile in both groups (P>0.05). CH patients with DG genotype of the D442G polymorphism had higher TC and low density lipoprotein-cholesterol (LDL-C) levels than those with a DD genotype(P<0.05).
CONCLUSIONCETP gene I405V polymorphism may not be associated with CH among ethnic Han Chinese from Changsha, while the D442G polymorphism of the CETP gene may be associated with TC and LDL levels in the same population.
Adult ; Aged ; Asian Continental Ancestry Group ; ethnology ; genetics ; Base Sequence ; Case-Control Studies ; Cerebral Hemorrhage ; blood ; ethnology ; genetics ; China ; ethnology ; Cholesterol Ester Transfer Proteins ; genetics ; metabolism ; Cholesterol, HDL ; blood ; Female ; Humans ; Lipids ; blood ; chemistry ; Male ; Middle Aged ; Molecular Sequence Data ; Mutation, Missense ; Polymorphism, Single Nucleotide
6.Advance in research on the genetic etiology of spontaneous intracerebral hemorrhage.
Jifeng KANG ; Qing HUANG ; Yunhai LIU
Chinese Journal of Medical Genetics 2016;33(5):702-707
Spontaneous intracerebral hemorrhage (SICH) is a form of brain parenchymal hemorrhage caused by a variety of non-traumatic reasons, resulting in cerebral artery, veins or capillaries rupture. The etiology of SICH is variable, with hypertensive intracerebral hemorrhage being the most common, accounting for 60% ~ 81% of all cases. Cerebral amyloid angiopathy, drug use related hemorrhage, Moyamoya disease are also important causes of SICH. Previous studies showed that genetic factors play an important role in the pathogenesis of SICH. Here the genetic mechanisms of SICH and classification of its etiology are reviewed.
Biomedical Research
;
methods
;
trends
;
Cerebral Hemorrhage
;
diagnosis
;
genetics
;
Genetic Predisposition to Disease
;
genetics
;
Genetic Variation
;
Genotype
;
Humans
;
Mutation
;
Polymorphism, Single Nucleotide
7.Genetics of Cerebral Small Vessel Disease.
Journal of Stroke 2015;17(1):7-16
Cerebral small vessel disease (SVD) is an important cause of stroke and cognitive impairment among the elderly and is a more frequent cause of stroke in Asia than in the US or Europe. Although traditional risk factors such as hypertension or diabetes mellitus are important in the development of cerebral SVD, the exact pathogenesis is still uncertain. Both, twin and family history studies suggest heritability of sporadic cerebral SVD, while the candidate gene study and the genome-wide association study (GWAS) are mainly used in genetic research. Robust associations between the candidate genes and occurrence of various features of sporadic cerebral SVD, such as lacunar infarction, intracerebral hemorrhage, or white matter hyperintensities, have not yet been elucidated. GWAS, a relatively new technique, overcomes several shortcomings of previous genetic techniques, enabling the detection of several important genetic loci associated with cerebral SVD. In addition to the more common, sporadic cerebral SVD, several single-gene disorders causing cerebral SVD have been identified. The number of reported cases is increasing as the clinical features become clear and diagnostic examinations are more readily available. These include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, COL4A1-related cerebral SVD, autosomal dominant retinal vasculopathy with cerebral leukodystrophy, and Fabry disease. These rare single-gene disorders are expected to play a crucial role in our understanding of cerebral SVD pathogenesis by providing animal models for the identification of cellular, molecular, and biochemical changes underlying cerebral small vessel damage.
Aged
;
Asia
;
CADASIL
;
Cerebral Hemorrhage
;
Cerebral Small Vessel Diseases*
;
Diabetes Mellitus
;
Europe
;
Fabry Disease
;
Genetic Association Studies
;
Genetic Loci
;
Genetic Research
;
Genetic Techniques
;
Genetics*
;
Genome-Wide Association Study
;
Humans
;
Hypertension
;
Leukoencephalopathies
;
Models, Animal
;
Retinaldehyde
;
Risk Factors
;
Stroke
;
Stroke, Lacunar
8.Genetics and Biomarkers of Moyamoya Disease: Significance of RNF213 as a Susceptibility Gene.
Miki FUJIMURA ; Shinya SONOBE ; Yasuo NISHIJIMA ; Kuniyasu NIIZUMA ; Hiroyuki SAKATA ; Shigeo KURE ; Teiji TOMINAGA
Journal of Stroke 2014;16(2):65-72
Moyamoya disease is characterized by a progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Although its etiology is still unknown, recent genome-wide and locus-specific association studies identified RNF213 as an important susceptibility gene of moyamoya disease among East Asian population. A polymorphism in c.14576G>A in RNF213 was identified in 95% of familial patients with moyamoya disease and 79% of sporadic cases, and patients having this polymorphism were found to have significantly earlier disease onset and a more severe form of moyamoya disease, such as the presentation of cerebral infarction and posterior cerebral artery stenosis. The exact mechanism by which the RNF213 abnormality relates to moyamoya disease remains unknown, while recent reports using genetically engineered mice lacking RNF213 by homologous recombination provide new insight for the pathogenesis of this rare entity. Regarding biomarkers of moyamoya disease, moyamoya disease is characterized by an increased expression of angiogenic factors and pro-inflammatory molecules such as vascular endothelial growth factors and matrix metalloproteinase-9, which may partly explain its clinical manifestations of the pathologic angiogenesis, spontaneous hemorrhage, and higher incidence of cerebral hyperperfusion after revascularization surgery. More recently, blockade of these pro-inflammatory molecules during perioperative period is attempted to reduce the potential risk of surgical complication including cerebral hyperperfusion syndrome. In this review article, we focus on the genetics and biomarkers of moyamoya disease, and sought to discuss their clinical implication.
Angiogenesis Inducing Agents
;
Animals
;
Asian Continental Ancestry Group
;
Biomarkers*
;
Brain
;
Carotid Artery, Internal
;
Cerebral Infarction
;
Constriction, Pathologic
;
Genetics*
;
Hemorrhage
;
Homologous Recombination
;
Humans
;
Incidence
;
Matrix Metalloproteinase 9
;
Mice
;
Moyamoya Disease*
;
Neovascularization, Pathologic
;
Perioperative Period
;
Posterior Cerebral Artery
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors
9.Stroke Genetics: A Review and Update.
Journal of Stroke 2014;16(3):114-123
Stroke genetics includes several topics of clinical interest, including (1) molecular genetic variations affecting risk of monogenic stroke syndromes; (2) molecular genetic variations affecting risk of common stroke syndromes, sometimes with specific effects on risk of specific main types of stroke or subtypes of ischemic and hemorrhagic stroke; (3) genetics of conditions associated with stroke risk e.g. white matter hyperintensities, atrial fibrillation and hypertension; (4) hereditary causes of familial aggregation of stroke; (5) epigenetic impact on protein expression during acute brain injury; (6) genetic influence on stroke recovery; and (7) pharmacogenetics. Genetic research methods include candidate gene studies; Genome Wide Association Studies; family studies; RNA and protein analyses; and advanced computer-aided analytical methods to detect statistically significant associations. Several methods that could improve our knowledge of stroke genetics are being developed e.g.: Exome content analysis; Next-generation sequencing; Whole genome sequencing; and Epigenetics. During 2012-2014, several Single Nucleotide Polymorphisms (SNPs) have been related to common ischemic stroke risk. Certain SNPs have been associated with risk of specific ischemic stroke subtypes such as large vessel disease and cardiac embolism, particular subtypes of intracerebral hemorrhage (ICH), especially lobar ICH, and with prognosis after ICH. Large international studies on stroke recovery and exome content are ongoing. Advanced mathematical models have been used to study how several SNPs can act together and increase stroke risk burden. Such efforts require large numbers of patients and controls, which is achieved by co-operation in large international consortia such as the International Stroke Genetics Consortium. This overview includes an introduction to genetics, stroke genetics in general, and different genetic variations that may influence stroke risk. It presents some of the latest reports on stroke genetics published in high impact journals. The role of pharmacogenetics, the current clinical situation, and future prospects will also be discussed.
Atrial Fibrillation
;
Brain Injuries
;
Cerebral Hemorrhage
;
Embolism
;
Epigenomics
;
Exome
;
Genetic Association Studies
;
Genetic Research
;
Genetic Variation
;
Genetics*
;
Genome
;
Genome-Wide Association Study
;
Humans
;
Hypertension
;
Models, Theoretical
;
Molecular Biology
;
Pharmacogenetics
;
Polymorphism, Single Nucleotide
;
Prognosis
;
RNA
;
Stroke*
10.Electroacupuncture at Zusanli (ST36) accelerates intracerebral hemorrhage-induced angiogenesis in rats.
Jie-Kun LUO ; Hua-Jun ZHOU ; Jing WU ; Tao TANG ; Qing-Hua LIANG
Chinese journal of integrative medicine 2013;19(5):367-373
OBJECTIVETo investigate the effects of electro-acupuncture on intracerebral hemorrhage (ICH)-induced angiogenesis and hypoxia-inducible factor-1α (HIF-1α) expression in rats.
METHODSAdult male Sprague-Dawley rats were randomly divided into 4 groups of 24 rats each. ICH was induced in 3 groups by stereotactic injection of collagenase type VII into the right globus pallidus; of these, one group was not further treated, the second group underwent Zusanli (ST36)-acupuncture, and the third group underwent non-acupoint acupuncture. The fourth group underwent sham operations. Acupuncture was performed by stimulation with electrical needles at frequencies of 2-20 Hz for 30 min per day. Angiogenesis on days 3, 7 and 14 was assessed by double immunolabeling, and expression of HIF-1α was evaluated by immunohistochemistry, quantitative real time reverse transcription-polymerase chain reaction and Western blotting.
RESULTS5-Bromo-2-deoxyuridine (BrdU)-labeled nuclei in cerebral endothelial cells (ECs) resided around the hematoma and the labeling peaked from 7 to 14 days (P<0.01). HIF-1α positive microvessels with a dilated outline were detected in perihematomal tissues after ICH, with the vessels extending into the clot from the surrounding area beginning on day 7. Following ICH, HIF-1α protein levels increased (P<0.05), but HIF-1α mRNA levels did not change. Electro-acupuncture at the Zusanli (ST36) acupoint increased BrdU-labeled nuclei in cerebral ECs (P<0.05) and up-regulated the expression of HIF-1α protein (P<0.05), but had little effect on the spatial distribution of HIF-1α or on HIF-1α mRNA levels.
CONCLUSIONSElectro-acupuncture treatment at the Zusanli (ST36) acupoint may accelerate ICH-induced angiogenesis by up-regulating HIF-1α protein, and may enhance recovery following hemorrhagic cerebral injury.
Acupuncture Points ; Animals ; Brain ; metabolism ; pathology ; Cell Proliferation ; Cerebral Hemorrhage ; genetics ; pathology ; physiopathology ; therapy ; Electroacupuncture ; Endothelial Cells ; pathology ; Gene Expression Regulation ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Immunohistochemistry ; Male ; Neovascularization, Physiologic ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail