1.Illness duration-related developmental trajectory of progressive cerebral gray matter changes in schizophrenia.
Xin CHANG ; Zhihuan YANG ; Yingjie TANG ; Xiaoying SUN ; Cheng LUO ; Dezhong YAO
Journal of Biomedical Engineering 2025;42(2):293-299
In different stages of schizophrenia (SZ), alterations in gray matter volume (GMV) of patients are normally regulated by various pathological mechanisms. Instead of analyzing stage-specific changes, this study employed a multivariate structural covariance model and sliding-window approach to investigate the illness duration-related developmental trajectory of GMV in SZ. The trajectory is defined as a sequence of brain regions activated by illness duration, represented as a sparsely directed matrix. By applying this approach to structural magnetic resonance imaging data from 145 patients with SZ, we observed a continuous developmental trajectory of GMV from cortical to subcortical regions, with an average change occurring every 0.208 years, covering a time window of 20.176 years. The starting points were widely distributed across all networks, except for the ventral attention network. These findings provide insights into the neuropathological mechanism of SZ with a neuroprogressive model and facilitate the development of process for aided diagnosis and intervention with the starting points.
Humans
;
Schizophrenia/pathology*
;
Gray Matter/pathology*
;
Magnetic Resonance Imaging
;
Disease Progression
;
Male
;
Female
;
Brain/pathology*
;
Cerebral Cortex/pathology*
;
Adult
2.Optical coherence tomography angiography and microvessel density quantification in penumbra after traumatic brain injury in rats.
Peng ZHONG ; Xiaodan HU ; Zhenzhou WANG
Journal of Peking University(Health Sciences) 2025;57(2):262-266
OBJECTIVE:
To observe the dynamic changes of microvascular injury and repair in the penumbra of traumatic brain injury (TBI) rats with effective cerebral perfusion microvascular imaging using optical coherence tomography angiography (OCTA).
METHODS:
Transparent closed cranial windows were placed in craniotomy rats after TBI caused by weight drop. All the rats in TBI group and control group underwent head MRI examination on the first postoperative day, and the changes of cerebral cortical microvessel density were measured by OCTA through cranial windows on d0, d2, d4, d6, and d8. On the second day after the operation, the same number of rats in the two groups were selected to complete the immunohistochemical staining of brain tissue with pimonidazole, an indicator of hypoxia.
RESULTS:
MRI T2W1 and immunohistochemical staining demonstrated that edema and hypoxia in the traumatic brain tissue extended deeply throughout the entire cortex. OCTA showed that the cortical surface veins of the rats in both groups were significantly dilated and tortuous after operation, and recovered to the postoperative day level on d8. The effective perfusion microvessel density of the rats in both groups gradually recovered after a temporary decrease, and the TBI group decreased from 39.38%±4.48% on d0 to 27.84%±6.01% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 61.71%±7.69% on d8, which was significantly higher than that on d0, d2, and d4 (P < 0.05). The control group decreased from 44.59%±7.78% on d0 to 36.69%±5.49% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 51.92%±5.96% on d8, which was significantly higher than that on d2, and d4 (P < 0.05). Comparing the two groups, the effective perfusion microvessel density in the TBI group was significantly lower than that in the control group on d2 (P=0.021), and significantly higher than that in the control group on d8 (P=0.030).
CONCLUSION
OCTA can be used as a method of imaging and measurement of effective perfusion microvessels in the injured cerebral cortex of TBI rats. After TBI, the effective perfusion microvessel density in the wound penumbra gradually recovered after decreasing, and increased significantly on d8.
Animals
;
Brain Injuries, Traumatic/physiopathology*
;
Rats
;
Tomography, Optical Coherence/methods*
;
Male
;
Rats, Sprague-Dawley
;
Microvessels/pathology*
;
Microvascular Density
;
Cerebral Cortex/blood supply*
;
Cerebrovascular Circulation
4.Structural changes of the frontal cortex in depressed mice are associated with decreased expression of brain-derived neurotrophic factor.
Weiwei CUI ; Liya GONG ; Chunhui CHEN ; Jjiayu TANG ; Xin JIN ; Zixin LI ; Linin JING ; Ge WEN
Journal of Southern Medical University 2023;43(6):1041-1046
OBJECTIVE:
To investigate the changes in gray matter volume in depressive-like mice and explore the possible mechanism.
METHODS:
Twenty-four 6-week-old C57 mice were randomized equally into control group and model group, and the mice in the model group were subjected to chronic unpredictable mild stimulation (CUMS) for 35 days. Magnetic resonance imaging was performed to examine structural changes of the grey matter volume in depressive-like mice. The expression of brain-derived neurotrophic factor (BDNF) in the grey matter of the mice was detected using Western blotting and immunofluorescence staining.
RESULTS:
Compared with the control mice, the mice with CUMS showed significantly decreased central walking distance in the open field test (P < 0.05) and increased immobile time in forced swimming test (P < 0.05). Magnetic resonance imaging showed that the volume of the frontal cortex was significantly decreased in CUMS mice (P < 0.001, when the mass level was greater than or equal to 10 756, the FDRc was corrected with P=0.05). Western blotting showed that the expression of mature BDNF in the frontal cortex was significantly decreased in CUMS mice (P < 0.05), and its expression began to decrease after the exposure to CUMS as shown by immunofluorescence staining. The volume of different clusters obtained by voxel-based morphometry (VBM) analysis was correlated with the expression level of mature BDNF detected by Western blotting (P < 0.05).
CONCLUSION
The decrease of frontal cortex volume after CUMS is related with the reduction of mature BDNF expression in the frontal cortex.
Animals
;
Mice
;
Blotting, Western
;
Brain-Derived Neurotrophic Factor
;
Cerebral Cortex
;
Depression/physiopathology*
;
Frontal Lobe/pathology*
5.An Anterior Cingulate Cortex-to-Midbrain Projection Controls Chronic Itch in Mice.
Ting-Ting ZHANG ; Su-Shan GUO ; Hui-Ying WANG ; Qi JING ; Xin YI ; Zi-Han HU ; Xin-Ren YU ; Tian-Le XU ; Ming-Gang LIU ; Xuan ZHAO
Neuroscience Bulletin 2023;39(5):793-807
Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.
Mice
;
Animals
;
Gyrus Cinguli/physiology*
;
Pruritus/pathology*
;
Mesencephalon
;
Cerebral Cortex/pathology*
;
Neurons/pathology*
6.Chronic hypoperfusion due to intracranial large artery stenosis is not associated with cerebral β-amyloid deposition and brain atrophy.
Dongyu FAN ; Huiyun LI ; Dongwan CHEN ; Yang CHEN ; Xu YI ; Heng YANG ; Qianqian SHI ; Fangyang JIAO ; Yi TANG ; Qiming LI ; Fangyang WANG ; Shunan WANG ; Rongbing JIN ; Fan ZENG ; Yanjiang WANG
Chinese Medical Journal 2022;135(5):591-597
BACKGROUND:
Insufficient cerebral perfusion is suggested to play a role in the development of Alzheimer disease (AD). However, there is a lack of direct evidence indicating whether hypoperfusion causes or aggravates AD pathology. We investigated the effect of chronic cerebral hypoperfusion on AD-related pathology in humans.
METHODS:
We enrolled a group of cognitively normal patients (median age: 64 years) with unilateral chronic cerebral hypoperfusion. Regions of interest with the most pronounced hypoperfusion changes were chosen in the hypoperfused region and were then mirrored in the contralateral hemisphere to create a control region with normal perfusion. 11C-Pittsburgh compound-positron emission tomography standard uptake ratios and brain atrophy indices were calculated from the computed tomography images of each patient.
RESULTS:
The median age of the 10 participants, consisting of 4 males and 6 females, was 64 years (47-76 years). We found that there were no differences in standard uptake ratios of the cortex (volume of interest [VOI]: P = 0.721, region of interest [ROI]: P = 0.241) and grey/white ratio (VOI: P = 0.333, ROI: P = 0.445) and brain atrophy indices (Bicaudate, Bifrontal, Evans, Cella, Cella media, and Ventricular index, P > 0.05) between the hypoperfused regions and contralateral normally perfused regions in patients with unilateral chronic cerebral hypoperfusion.
CONCLUSION
Our findings suggest that chronic hypoperfusion due to large vessel stenosis may not directly induce cerebral β-amyloid deposition and neurodegeneration in humans.
Aged
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Arteries
;
Atrophy
;
Brain/metabolism*
;
Cerebral Cortex/metabolism*
;
Cerebrovascular Circulation
;
Constriction, Pathologic/pathology*
;
Female
;
Humans
;
Magnetic Resonance Imaging/methods*
;
Male
;
Middle Aged
;
Positron-Emission Tomography/methods*
7.Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model.
Ying HAN ; Tong ZHAO ; Xiang CHENG ; Ming ZHAO ; Sheng-Hui GONG ; Yong-Qi ZHAO ; Hai-Tao WU ; Ming FAN ; Ling-Ling ZHU
Neuroscience Bulletin 2018;34(6):1058-1066
While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Caspase 3
;
metabolism
;
Cerebral Cortex
;
pathology
;
Claudin-5
;
metabolism
;
Colitis
;
chemically induced
;
complications
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Dextran Sulfate
;
toxicity
;
Disease Models, Animal
;
Encephalitis
;
etiology
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Microfilament Proteins
;
metabolism
;
Occludin
;
metabolism
;
Polysaccharides
;
blood
;
toxicity
;
Time Factors
8.Laminar Distribution of Neurochemically-Identified Interneurons and Cellular Co-expression of Molecular Markers in Epileptic Human Cortex.
Qiyu ZHU ; Wei KE ; Quansheng HE ; Xiongfei WANG ; Rui ZHENG ; Tianfu LI ; Guoming LUAN ; Yue-Sheng LONG ; Wei-Ping LIAO ; Yousheng SHU
Neuroscience Bulletin 2018;34(6):992-1006
Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.
Adolescent
;
Adult
;
Brain Chemistry
;
genetics
;
physiology
;
Cerebral Cortex
;
metabolism
;
pathology
;
Child
;
Cholecystokinin
;
metabolism
;
Epilepsy
;
etiology
;
pathology
;
Female
;
Gene Expression Regulation
;
physiology
;
Humans
;
Interneurons
;
metabolism
;
Male
;
Middle Aged
;
Neuropeptide Y
;
metabolism
;
Parvalbumins
;
metabolism
;
Phosphopyruvate Hydratase
;
metabolism
;
Somatostatin
;
metabolism
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Young Adult
9.Clinics in diagnostic imaging (193). Sporadic Creutzfeldt-Jakob disease (sCJD).
Jun Si Yuan LI ; Kheng Choon LIM ; Winston Eng Hoe LIM ; Robert Chun CHEN
Singapore medical journal 2018;59(12):634-641
A 68-year-old man presented with a three-week history of rapidly progressive dementia, gait ataxia and myoclonus. Subsequent electroencephalography showed periodic sharp wave complexes, and cerebrospinal fluid assay revealed the presence of a 14-3-3 protein. A probable diagnosis of sporadic Creutzfeldt-Jakob disease was made, which was further supported by magnetic resonance (MR) imaging of the brain showing asymmetric signal abnormality in the cerebral cortices and basal ganglia. The aetiology, clinical features, diagnostic criteria, various MR imaging patterns and radiologic differential diagnosis of sporadic Creutzfeldt-Jakob disease are discussed in this article.
Aged
;
Brain
;
pathology
;
Cerebral Cortex
;
Cerebrospinal Fluid
;
metabolism
;
Creutzfeldt-Jakob Syndrome
;
diagnostic imaging
;
Dementia
;
physiopathology
;
Diagnosis, Differential
;
Diffusion Magnetic Resonance Imaging
;
Electroencephalography
;
Humans
;
Hypoxia-Ischemia, Brain
;
diagnostic imaging
;
Male
;
Prion Diseases
;
physiopathology
10.The Mechanism of Cortico-Striato-Thalamo-Cortical Neurocircuitry in Response Inhibition and Emotional Responding in Attention Deficit Hyperactivity Disorder with Comorbid Disruptive Behavior Disorder.
Yuncheng ZHU ; Xixi JIANG ; Weidong JI
Neuroscience Bulletin 2018;34(3):566-572
The neurocircuitries that constitute the cortico-striato-thalamo-cortical (CSTC) circuit provide a framework for bridging gaps between neuroscience and executive function in attention deficit hyperactivity disorder (ADHD), but it has been difficult to identify the mechanisms for regulating emotional problems from the understanding of ADHD comorbidity with disruptive behavior disorders (DBD). Research based on "cool" and "hot" executive functional theory and the dual pathway models, which are thought of as applied response inhibition and delay aversion, respectively, within the neuropsychological view of ADHD, has shed light on emotional responding before and after decontextualized stimuli, while CSTC circuit-related domains have been suggested to explain the different emotional symptoms of ADHD with or without comorbid DBD. This review discusses the role of abnormal connections in each CSTC circuit, especially in the emotion circuit, which may be responsible for targeted executive dysfunction at the neuroscience level. Thus, the two major domains - abstract thinking (cool) and emotional trait (hot) - trigger the mechanism of onset of ADHD.
Animals
;
Attention Deficit Disorder with Hyperactivity
;
complications
;
pathology
;
psychology
;
Attention Deficit and Disruptive Behavior Disorders
;
complications
;
pathology
;
psychology
;
Brain
;
physiopathology
;
Cerebral Cortex
;
physiopathology
;
Corpus Striatum
;
physiopathology
;
Emotions
;
Humans
;
Inhibition (Psychology)
;
Neuropsychological Tests
;
Thalamus
;
physiopathology

Result Analysis
Print
Save
E-mail