1.Human Cortical Organoids with a Novel SCN2A Variant Exhibit Hyperexcitability and Differential Responses to Anti-Seizure Compounds.
Yuling YANG ; Yang CAI ; Shuyang WANG ; Xiaoling WU ; Zhicheng SHAO ; Xin WANG ; Jing DING
Neuroscience Bulletin 2025;41(11):2010-2024
Mutations in ion channel genes have long been implicated in a spectrum of epilepsy syndromes. However, therapeutic decision-making is relatively complex for epilepsies associated with channelopathy. Therefore, in the present study, we used a patient-derived organoid model with a novel SCN2A mutation (p.E512K) to investigate the potential of utilizing such a model as a platform for preclinical testing of anti-seizure compounds. The electrophysiological properties of the variant Nav1.2 exhibited gain-of-function effects with increased current amplitude and premature activation. Immunofluorescence staining of patient-derived cortical organoids (COs) displayed normal neurodevelopment. Multielectrode array (MEA) recordings of patient-derived COs showed hyperexcitability with increased spiking and remarkable network bursts. Moreover, the application of patient-derived COs for preclinical drug testing using the MEA showed that they exhibit differential responses to various anti-seizure drugs and respond well to carbamazepine. Our results demonstrate that the individualized organoids have the potential to serve as a platform for preclinical pharmacological assessment.
Organoids/physiology*
;
NAV1.2 Voltage-Gated Sodium Channel/genetics*
;
Humans
;
Anticonvulsants/pharmacology*
;
Epilepsy/drug therapy*
;
Mutation
;
Cerebral Cortex/drug effects*
;
Action Potentials/drug effects*
;
Carbamazepine/pharmacology*
2.Gating of Social Behavior by Inhibitory Inputs from Hippocampal CA1 to Retrosplenial Agranular Cortex.
Yuhan SHI ; Jingjing YAN ; Xiaohong XU ; Zilong QIU
Neuroscience Bulletin 2024;40(11):1635-1648
The retrosplenial cortex has been implicated in processing sensory information and spatial learning, with abnormal neural activity reported in association with psychedelics and in mouse and non-human primate models of autism spectrum disorders (ASDs). The direct role of the retrosplenial cortex in regulating social behaviors remains unclear. In this work, we reveal that neural activity in the retrosplenial agranular cortex (RSA), a subregion of the retrosplenial cortex, is initially activated, then quickly suppressed upon social contact. This up-down phase of RSA neurons is crucial for normal social behaviors. Parvalbumin-positive GABAergic neurons in the hippocampal CA1 region were found to send inhibitory projections to the RSA. Blocking these CA1-RSA inhibitory inputs significantly impaired social behavior. Notably, enhancing the CA1-RSA inhibitory input rescued the social behavior defects in an ASD mouse model. This work suggests a neural mechanism for the salience processing of social behavior and identifies a potential target for ASD intervention using neural modulation approaches.
Animals
;
Social Behavior
;
CA1 Region, Hippocampal/physiology*
;
Mice
;
Male
;
Autism Spectrum Disorder/physiopathology*
;
Mice, Inbred C57BL
;
GABAergic Neurons/drug effects*
;
Neural Inhibition/drug effects*
;
Parvalbumins/metabolism*
;
Neural Pathways/physiology*
;
Cerebral Cortex/physiology*
3.Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei.
Yue HU ; Yun WANG ; Lingjing ZHANG ; Mengqiang LUO ; Yingwei WANG
Neuroscience Bulletin 2024;40(12):1995-2011
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
Humans
;
Anesthesia, General
;
Animals
;
Nerve Net/physiology*
;
Cerebral Cortex/drug effects*
;
Neural Pathways/drug effects*
;
Thalamus/drug effects*
;
Consciousness/drug effects*
4.Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model.
Ying HAN ; Tong ZHAO ; Xiang CHENG ; Ming ZHAO ; Sheng-Hui GONG ; Yong-Qi ZHAO ; Hai-Tao WU ; Ming FAN ; Ling-Ling ZHU
Neuroscience Bulletin 2018;34(6):1058-1066
While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Caspase 3
;
metabolism
;
Cerebral Cortex
;
pathology
;
Claudin-5
;
metabolism
;
Colitis
;
chemically induced
;
complications
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Dextran Sulfate
;
toxicity
;
Disease Models, Animal
;
Encephalitis
;
etiology
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Microfilament Proteins
;
metabolism
;
Occludin
;
metabolism
;
Polysaccharides
;
blood
;
toxicity
;
Time Factors
5.Protective effect of histone acetylation against cortical injury in neonatal rats.
Ji-Chong HUANG ; Ya-Fei LI ; Feng-Yan ZHAO ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2017;19(1):81-87
OBJECTIVETo investigate the protective effect of histone acetylation against hypoxic-ischemic cortical injury in neonatal rats.
METHODSA total of 90 neonatal rats aged 3 days were divided into three groups: sham-operation, cortical injury model, and sodium butyrate (a histone deacetylase inhibitor) treatment. The rats in the model and the sodium butyrate treatment groups were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg), and then right common carotid artery ligation was performed 2 hours later and the rats were put in a hypoxic chamber (oxygen concentration 6.5%) for 90 minutes. The rats in the sham-operation group were intraperitoneally injected with normal saline and the right common carotid artery was only separated and exposed without ligation or hypoxic treatment. The rats in the sodium butyrate treatment group were intraperitoneally injected with sodium butyrate (300 mg/kg) immediately after establishment of the cortical injury model once a day for 7 days. Those in the sham-operation and the model groups were injected with the same volume of normal saline. At 7 days after establishment of the model, Western blot was used to measure the protein expression of histone H3 (HH3), acetylated histone H3 (AH3), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (BAX), cleaved caspase-3 (CC3), and brain-derived neurotrophic factor (BDNF). Immunofluorescence assay was used to measure the expression of 5-bromo-2'-deoxyuridine (BrdU) as the cortex cell proliferation index.
RESULTSThe sodium butyrate treatment group had a significantly lower HH3/AH3 ratio than the model group (P<0.05), which suggested that the sodium butyrate treatment group had increased acetylation of HH3. Compared with the model group, the sodium butyrate treatment group had a significant increase in Bcl-2/Bax ratio, a significant reduction in CC3 expression, and a significant increase in BDNF expression (P<0.05). The sodium butyrate treatment group had a significant increase in the number of BrdU-positive cells in the cortex compared with the model group (P<0.05), and BrdU was mainly expressed in the neurons.
CONCLUSIONSIncreased histone acetylation may protect neonatal rats against cortical injury by reducing apoptosis and promoting regeneration of neurons. The mechanism may be associated with increased expression of BDNF.
Acetylation ; Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Brain-Derived Neurotrophic Factor ; analysis ; Butyric Acid ; therapeutic use ; Cerebral Cortex ; pathology ; Female ; Histones ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley
6.Acrylamide-induced Subacute Neurotoxic Effects on the Cerebral Cortex and Cerebellum at the Synapse Level in Rats.
Bin ZHANG ; Hua SHAO ; Xiu Hui WANG ; Xiao CHEN ; Zhong Sheng LI ; Peng CAO ; Dan ZHU ; Yi Guang YANG ; Jing Wei XIAO ; Bin LI
Biomedical and Environmental Sciences 2017;30(6):432-443
OBJECTIVETo investigate acrylamide (ACR)-induced subacute neurotoxic effects on the central nervous system (CNS) at the synapse level in rats.
METHODSThirty-six Sprague Dawley (SD) rats were randomized into three groups, (1) a 30 mg/kg ACR-treated group, (2) a 50 mg/kg ACR-treated group, and (3) a normal saline (NS)-treated control group. Body weight and neurological changes were recorded each day. At the end of the test, cerebral cortex and cerebellum tissues were harvested and viewed using light and electron microscopy. Additionally, the expression of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were investigated.
RESULTSThe 50 mg/kg ACR-treated rats showed a significant reduction in body weight compared with untreated individuals (P < 0.05). Rats exposed to ACR showed a significant increase in gait scores compared with the NS control group (P < 0.05). Histological examination indicated neuronal structural damage in the 50 mg/kg ACR treatment group. The active zone distance (AZD) and the nearest neighbor distance (NND) of synaptic vesicles in the cerebral cortex and cerebellum were increased in both the 30 mg/kg and 50 mg/kg ACR treatment groups. The ratio of the distribution of synaptic vesicles in the readily releasable pool (RRP) was decreased. Furthermore, the expression levels of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were decreased in both the 30 mg/kg and 50 mg/kg ACR treatment groups.
CONCLUSIONSubacute ACR exposure contributes to neuropathy in the rat CNS. Functional damage of synaptic proteins and vesicles may be a mechanism of ACR neurotoxicity.
Acrylamide ; toxicity ; Animals ; Cerebellum ; cytology ; drug effects ; Cerebral Cortex ; cytology ; drug effects ; Drug Administration Schedule ; Gait ; Gene Expression Regulation ; drug effects ; Male ; Neurons ; drug effects ; Neurotoxicity Syndromes ; pathology ; Rats ; Rats, Sprague-Dawley ; Synapses ; drug effects ; Synapsins ; genetics ; metabolism ; Synaptic Vesicles ; drug effects ; physiology ; Weight Loss ; drug effects
7.Effect of corticosterone on lissencephaly 1 expression in developing cerebral cortical neurons of fetal rats cultured in vitro.
Sen-Lin LUO ; Tao BO ; Tong LIU ; Jia-Jia XIONG ; Jian LI
Chinese Journal of Contemporary Pediatrics 2017;19(9):1008-1013
OBJECTIVETo investigate the effect of corticosterone on the expression of the neuronal migration protein lissencephaly 1 (LIS1) in developing cerebral cortical neurons of fetal rats.
METHODSThe primary cultured cerebral cortical neurons of fetal Wistar rats were divided into control group, low-dose group, and high-dose group. The neurons were exposed to the medium containing different concentrations of corticosterone (0 μmol/L for the control group, 0.1 μmol/L for the low-dose group, and 1.0 μmol/L for the high-dose group). The neurons were collected at 1, 4, and 7 days after intervention. Western blot and immunocytochemical staining were used to observe the change in LIS1 expression in neurons.
RESULTSWestern blot showed that at 7 days after intervention, the low- and high-dose groups had significantly higher expression of LIS1 in the cytoplasm and nucleus of cerebral cortical neurons than the control group (P<0.05), and the high-dose group had significantly lower expression of LIS1 in the cytoplasm of cerebral cortical neurons than the low-dose group (P<0.05). Immunocytochemical staining showed that at 1, 4, and 7 days after corticosterone intervention, the high-dose group had a significantly lower mean optical density of LIS1 than the control group and the low-dose group (P<0.05). At 7 days after intervention, the low-dose group had a significantly lower mean optical density of LIS1 than the control group (P<0.05).
CONCLUSIONSCorticosterone downregulates the expression of the neuronal migration protein LIS1 in developing cerebral cortical neurons of fetal rats cultured in vitro, and such effect depends on the concentration of corticosterone and duration of corticosterone intervention.
1-Alkyl-2-acetylglycerophosphocholine Esterase ; analysis ; genetics ; Animals ; Cells, Cultured ; Cerebral Cortex ; drug effects ; metabolism ; Corticosterone ; pharmacology ; Dose-Response Relationship, Drug ; Female ; Fetus ; drug effects ; Microtubule-Associated Proteins ; analysis ; genetics ; Pregnancy ; Rats ; Rats, Wistar
8.Toxic effect of formaldehyde on mouse different brain regions.
Feng-Hua CAO ; Jie CAI ; Zhi-Min LIU ; Hui LI ; Hui-Hui YOU ; Yu-Fei MEI ; Xu YANG ; Shu-Mao DING
Acta Physiologica Sinica 2015;67(5):497-504
The aim of this study was to explore the mechanism of the nervous system lesions induced by formaldehyde (FA). Male Balb/c mice were exposed to gaseous formaldehyde for 7 days (8 h/d) with three different concentrations (0, 0.5 and 3.0 mg/m(3)). A group of animals injected with the nitric oxide synthase inhibitor L-NMMA (0.01 mL/g) was also set and exposed to 3.0 mg/m(3) FA. The concentrations of cAMP, cGMP, NO and the activity of NOS in cerebral cortex, hippocampus and brain stem were determined by corresponding assay kits. The results showed that, compared with the control (0 mg/m(3) FA) group, the cAMP contents in cerebral cortex and brain stem were significantly increased in 0.5 mg/m(3) FA group (P < 0.05), but decreased in 3.0 mg/m(3) FA group (P < 0.05); The concentration of cAMP in hippocampus was significantly decreased in 3.0 mg/m(3) FA group (P < 0.05). In comparison with the control group, L-NMMA group showed unchanged cAMP contents and NOS activities in different brain regions, but showed increased cGMP contents in hippocampus and NO contents in cerebral cortex (P < 0.05). In addition, compared with 3.0 mg/m(3) FA group, L-NMMA group showed increased contents of cAMP and reduced NOS activities in different brain regions, as well as significantly decreased cGMP contents in cerebral cortex and brain stem and NO content in brain stem. These results suggest that the toxicity of FA on mouse nervous system is related to NO/cGMP and cAMP signaling pathways.
Animals
;
Brain Stem
;
chemistry
;
drug effects
;
Cerebral Cortex
;
chemistry
;
drug effects
;
Cyclic AMP
;
chemistry
;
Cyclic GMP
;
chemistry
;
Formaldehyde
;
toxicity
;
Hippocampus
;
chemistry
;
drug effects
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide
;
chemistry
;
Nitric Oxide Synthase
;
antagonists & inhibitors
;
omega-N-Methylarginine
;
pharmacology
9.Assessing Adverse Effects of Aroclor 1254 on Perinatally Exposed Rat Offspring.
Wei TANG ; Jin Ping CHENG ; Yi Chen YANG ; Wen Hua WANG
Biomedical and Environmental Sciences 2015;28(9):687-690
To assess the neurotoxic effects and redox responses of Aroclor 1254 (A1254) on perinatally exposed rat offspring, A1254 was administered by gavage from gestational day (GD) 6 to postnatal day (PND) 21. Neurobehavioral development, antioxidant enzyme activities, lipid peroxidation (LPO), nitric oxide (NO), and NO synthase (NOS) levels were analyzed in the offspring. Neurobehavioral development analysis revealed delayed appearance of the righting reflex, negative geotaxis, and cliff drop test responses in A1254 exposed group. Developmental A1254 exposure also caused oxidative stress in the brain of PND 22 offspring via reductions in the activity of SOD and GSH-Px, and by promoting a rise in the levels of NO and NOS.
Aging
;
metabolism
;
Animals
;
Cerebral Cortex
;
drug effects
;
enzymology
;
metabolism
;
Chlorodiphenyl (54% Chlorine)
;
toxicity
;
Female
;
Glutathione Peroxidase
;
metabolism
;
Kidney
;
drug effects
;
enzymology
;
metabolism
;
Lipid Peroxidation
;
drug effects
;
Liver
;
drug effects
;
enzymology
;
metabolism
;
Mice
;
Nervous System
;
drug effects
;
growth & development
;
metabolism
;
physiopathology
;
Nervous System Diseases
;
chemically induced
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase
;
metabolism
;
Oxidative Stress
;
drug effects
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
chemically induced
;
Random Allocation
;
Rats
;
Superoxide Dismutase
;
metabolism
10.Influence of Iron Supplementation on DMT1 (IRE)-induced Transport of Lead by Brain Barrier Systems in vivo.
Dai Zhi AN ; Jun Tao AI ; Hong Juan FANG ; Ru Bao SUN ; Yun SHI ; Li Li WANG ; Qiang WANG
Biomedical and Environmental Sciences 2015;28(9):651-659
OBJECTIVETo investigate the potential involvement of DMT1 (IRE) protein in the brain vascular system in vivo during Pb exposure.
METHODSThree groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the mRNA.
RESULTSPb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1 (IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1 (IRE) mRNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1 (IRE).
CONCLUSIONThese results suggest that Pb is transported into the brain through DMT1 (IRE), and the ERK MAPK pathway is involved in DMT1 (IRE)-mediated transport regulation in brain vascular system in vivo.
Animals ; Blood-Brain Barrier ; drug effects ; metabolism ; Cation Transport Proteins ; drug effects ; genetics ; physiology ; Cerebral Cortex ; drug effects ; metabolism ; Dietary Supplements ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Gene Expression Regulation ; drug effects ; Iron ; administration & dosage ; metabolism ; Lead ; administration & dosage ; pharmacokinetics ; MAP Kinase Signaling System ; physiology ; Male ; RNA, Messenger ; metabolism ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail