1.Inflammatory disorders that affect the cerebral small vessels.
Fei HAN ; Siyuan FAN ; Bo HOU ; Lixin ZHOU ; Ming YAO ; Min SHEN ; Yicheng ZHU ; Joanna M WARDLAW ; Jun NI
Chinese Medical Journal 2025;138(11):1301-1312
This comprehensive review synthesizes the latest advancements in understanding inflammatory disorders affecting cerebral small vessels, a distinct yet understudied category within cerebral small vessel diseases (SVD). Unlike classical SVD, these inflammatory conditions exhibit unique clinical presentations, imaging patterns, and pathophysiological mechanisms, posing significant diagnostic and therapeutic challenges. Highlighting their heterogeneity, this review spans primary angiitis of the central nervous system, cerebral amyloid angiopathy-related inflammation, systemic vasculitis, secondary vasculitis, and vasculitis in autoinflammatory diseases. Key discussions focus on emerging insights into immune-mediated processes, neuroimaging characteristics, and histopathological distinctions. Furthermore, this review underscores the importance of standardized diagnostic frameworks, individualized immunomodulation approaches, and novel targeted therapies to address unmet clinical demands.
Humans
;
Cerebral Small Vessel Diseases/pathology*
;
Inflammation/pathology*
;
Cerebral Amyloid Angiopathy/pathology*
;
Vasculitis, Central Nervous System/pathology*
;
Vasculitis/pathology*
2.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
3.Salvianolic Acid B and Ginsenoside Rg1 Combination Attenuates Cerebral Edema Accompanying Glymphatic Modulation.
Lingxiao ZHANG ; Yanan SHAO ; Zhao FANG ; Siqi CHEN ; Yixuan WANG ; Han SHA ; Yuhan ZHANG ; Linlin WANG ; Yi JIN ; Hao CHEN ; Baohong JIANG
Neuroscience Bulletin 2025;41(11):1909-1923
Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h. GS function was assessed by Evans blue imaging, near-infrared fluorescence region II (NIR-II) imaging, and magnetic resonance imaging (MRI). SalB/Rg1 had significant effects on reducing the infarct volume and hemorrhagic transformation score, improving neurobehavioral function, and protecting tissue structure, especially inhibiting cerebral edema. Meanwhile, the influx/efflux drainage of GS was enhanced by SalB/Rg1 according to NIR-II imaging and MRI. SalB/Rg1 inhibited matrix metalloproteinase-9 (MMP-9) activity, reduced cleaved β-dystroglycan (β-DG), and stabilized aquaporin-4 (AQP4) polarity, which was verified by colocalization with CD31. Our findings indicated that SalB/Rg1 treatment enhances GS function and attenuates cerebral edema, accompanying the regulation of the MMP9/β-DG/AQP4 pathway.
Animals
;
Ginsenosides/administration & dosage*
;
Brain Edema/etiology*
;
Male
;
Benzofurans/administration & dosage*
;
Glymphatic System/diagnostic imaging*
;
Mice
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Aquaporin 4/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Matrix Metalloproteinase 9/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Depsides
4.Acute cerebral infarction following extracorporeal membrane oxygenation treatment in patients with cardiogenic shock: 2 cases report and review of the literature.
Ying LIU ; Qian ZHANG ; Jia YUAN ; Xianjun CHEN ; Junling TAO ; Bowen CHEN ; Wei ZHAO ; Guangsu LI ; Yehong LI ; Di LIU
Chinese Critical Care Medicine 2023;35(12):1286-1290
OBJECTIVE:
To explore the diagnosis and treatment of acute cerebral infarction following extracorporeal membrane oxygenation (ECMO) therapy in patients with cardiogenic shock to review the literature.
METHODS:
The clinical data of two patients with cardiogenic shock treated with veno-arterial ECMO (VA-ECMO) complicated with acute cerebral infarction admitted to department of intensive care unit (ICU) of Affiliated Hospital of Guizhou Medical University were retrospectively analyzed and the treatment experience was shared.
RESULTS:
Case 1 was a 46-year-old male patient who was admitted to the hospital on September 16, 2021, due to "repeated chest tightness, shortness of breath, syncope for 2+ years, and worsened for 15 days. Coronary artery angiography showed 3-vessel coronary artery disease lesions. On October 15, 2021, coronary artery bypass grafting (CABG), pericardial fenestration and drainage, thoracic closed drainage, femoral bypass, thoracotomy exploration, and sternal internal fixation were performed under support of extracorporeal circulation. After surgery, the heart rate was 180-200 bpm, the blood pressure could not be maintained, and the improvement was not obvious after active drug treatment. The right femoral artery and femoral vein were intubated, VA-ECMO support treatment was performed, and the patient was transferred to the ICU. Intra-aortic balloon pump (IABP) was treated on the day of transfer because the circulation could not be maintained. Due to acute cerebral infarction in the left hemisphere and right parieto-occipital lobe, subfalcine herniation, tentorial herniation, the patient ultimately died after withdrawing from ECMO. Case 2 was a 43-year-old male patient who was admitted to the hospital on June 29, 2021, with "fever for 8 days and vomiting for 4 days". Bedside ultrasound showed cardiac enlargement and diffuse wall motion reduction in the left and right ventricles. On June 30, 2021, the patient underwent catheterization through the right femoral artery and femoral vein, VA-ECMO support, and was transferred to ICU for treatment. Acute cerebral infarction on both sides of the cerebellum occurred, and after treatment, the patient was discharged with mild impairment of daily living ability.
CONCLUSIONS
Strengthen monitoring of anticoagulation; regular neurological examination of patients undergoing ECMO therapy; ECMO under light sedation or awake can be performed if the condition permitsif the condition permits, perform light sedation or awake ECMO, which helpful for the early detection of nervous system injury.
Male
;
Humans
;
Middle Aged
;
Adult
;
Shock, Cardiogenic/therapy*
;
Extracorporeal Membrane Oxygenation
;
Retrospective Studies
;
Coronary Artery Bypass/adverse effects*
;
Cerebral Infarction/therapy*
5.Effects of electro-scalp acupuncture on inflammatory response and microglial polarization in the ischemic cortex of rats with ischemic stroke.
Xiao-Yun PENG ; Bo YUAN ; Tian TIAN ; Wen-Jun LUO ; Ling-Gui ZHU ; Yan-Ju ZHANG ; Ying LI ; Xiao-Zheng DU ; Jin-Hai WANG
Chinese Acupuncture & Moxibustion 2023;43(9):1050-1055
OBJECTIVE:
To observe the effects of electro-scalp acupuncture (ESA) on the expression of microglial markers CD206 and CD32, as well as interleukin (IL)-6, IL-1β, and IL-10 in the ischemic cortex of rats with ischemic stroke, and to explore the mechanisms of ESA on alleviating inflammatory damage of ischemic stroke.
METHODS:
Sixty 7-week-old male SD rats were randomly selected, with 15 rats assigned to a sham surgery group. The remaining rats were treated with suture method to establish rat model of middle cerebral artery occlusion (MCAO). The rats with successful model were randomly divided into a model group, a VitD3 group, and an ESA group, with 15 rats in each group. In the ESA group, ESA was performed bilaterally at the "top-temporal anterior oblique line" with disperse-dense wave, a frequency of 2 Hz/100 Hz, and an intensity of 1 mA. Each session lasted for 30 min, once daily, for a total of 7 days. The VitD3 group were treated with intragastric administration of 1,25-dihydroxyvitamin D3 (1,25-VitD3) solution (3 ng/100 g), once daily for 7 days. The neurological deficit scores and neurobehavioral scores were assessed before and after the intervention. After the intervention, the brain infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Immunofluorescence double staining was performed to detect the protein expression of CD32 and CD206 in the ischemic cortex. Western blot analysis was conducted to measure the protein expression of IL-6, IL-1β, and IL-10 in the ischemic cortex.
RESULTS:
Compared with the sham surgery group, the model group showed increased neurological deficit scores and neurobehavioral scores (P<0.01), increased brain infarct volume (P<0.01), increased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and decreased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the model group, both the ESA group and the VitD3 group showed decreased neurological deficit scores and neurobehavioral scores (P<0.01), reduced brain infarct volume (P<0.01), decreased protein expression of CD32, IL-6, and IL-1β in the ischemic cortex (P<0.01), and increased protein expression of CD206 and IL-10 in the ischemic cortex (P<0.01). Compared with the VitD3 group, the ESA group had lower neurological deficit score (P<0.05), larger brain infarct volume (P< 0.05), and lower protein expression of CD32, CD206, IL-1β, and IL-10 in the ischemic cortex (P<0.01, P<0.05).
CONCLUSION
ESA could improve neurological function in MCAO rats, and its mechanism may be related to promoting microglial M1-to-M2 polarization and alleviating inflammatory damage.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Ischemic Stroke
;
Interleukin-10
;
Interleukin-6/genetics*
;
Microglia
;
Scalp
;
Acupuncture Therapy
;
Vitamins
;
Infarction, Middle Cerebral Artery
6.Effect of Xiaoxuming Decoction on activation of astrocytes in acute cerebral ischemia/reperfusion injury.
Xue-Qin FU ; Man-Man WANG ; Rui LAN ; Yong ZHANG ; Xu-Huan ZOU ; Wei-Wei WANG ; Chen TANG ; Shuang LIU ; Hong-Yu LI
China Journal of Chinese Materia Medica 2023;48(21):5830-5837
This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.
Rats
;
Animals
;
Astrocytes
;
Brain Ischemia/metabolism*
;
Brain
;
Reperfusion Injury/metabolism*
;
Infarction, Middle Cerebral Artery
7.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
9.Clinical analysis of 15 pregnant women complicated with moyamoya disease.
Yu Xiang YANG ; Wei Na GAO ; Chen CHEN ; Xian Lan ZHAO
Chinese Journal of Obstetrics and Gynecology 2023;58(4):270-276
Objective: To explore the effects of pregnancy complicated with moyamoya disease on maternal and fetal outcomes. Methods: The general clinical data and maternal and fetal outcomes of 20 pregnancies of 15 patients with moyamoya disease admitted to the First Affiliated Hospital of Zhengzhou University from January 2012 to October 2022 were retrospectively analyzed. Results: (1) General information: among the 20 pregnancies of 15 clearly diagnosed pregnant women complicated with moyamoya disease, 12 were diagnosed before pregnancy (60%, 12/20), 3 were diagnosed during pregnancy (15%, 3/20), and 5 were diagnosed during puerperal period (25%, 5/20). There were 7 cases of primipara (35%, 7/20) and 13 cases of multipara (65%, 13/20). (2) Pregnancy complications and maternal and infant outcomes: among the 20 pregnancies of 15 pregnant women with moyamoya disease, there were 9 pregnancy complications (45%, 9/20), including 5 gestational hypertension (25%, 5/20), 2 severe pre-eclampsia (10%, 2/20), 1 hyperlipidemia and 1 gestational diabetes mellitus (5%, 1/20). There were 2 case of drug abortion in the first trimester, 3 cases of labor induction in the second trimester, and 15 cases of delivery during the third trimester. All the 15 deliveries were cesarean section, of which 11 (11/15) were cesarean sections with medical indications, and 4 (4/15) were cesarean sections caused by personal factors. General anesthesia was used in 5 cases (5/15), epidural block anesthesia in 7 cases (7/15), and combined spinal and epidural anesthesia in 3 cases (3/15). The median gestational age of 15 neonates was 37.2 weeks (34.0 to 40.8 weeks), with 10 cases (10/15) were full-term infants, and 5 (5/15) were preterm infants (3 of which were associated with hypertensive disorder complicating pregnancy). The birth weight of 15 neonates was (2 853±454) g. Four neonates were admitted to neonatal intensive care unit (NICU), of which 3 cases were admitted to NICU due to premature delivery and 1 case was admitted to NICU due to neonatal jaundice. There was no neonatal asphyxia or death. All neonates were followed up from 4 months to 6 years after birth, and all grew well. (3) Neurological symptoms during pregnancy: 8 cases (40%, 8/20) had neurological symptoms during pregnancy, and 6 cases (30%, 6/20) had hemorrhagic symptoms, of which 3 cases occurred during the puerperal period (3/6). There were 2 cases of ischemic symptoms (10%, 2/20), all of which occurred during the puerperal period (2/2). (4) Analysis of factors related to the occurrence of cerebral hemorrhage: the incidence of cerebral hemorrhage in patients with moyamoya disease diagnosed before pregnancy was significantly lower than that in those without a clear diagnosis, and the incidence of cerebral hemorrhage in women with moyamoya disease was lower than that in primipara (all P<0.01). The incidence of cerebral hemorrhage in moyamoya patients without hypertensive disorder complicating pregrancy was lower than that in patients with hypertensive disorder complicating pregrancy, but the difference was not statistically significant (P>0.05). Conclusions: Pregnancy combined with moyamoya disease has adverse effects on maternal and infant outcomes, and the incidence of pregnancy complications increases. Cerebral hemorrhage occurres in prenatal and puperium, while cerebral ischemia occurres mainly in puperium.
Infant
;
Pregnancy
;
Infant, Newborn
;
Female
;
Humans
;
Pregnancy Outcome
;
Cesarean Section
;
Pregnant Women
;
Infant, Premature
;
Moyamoya Disease/complications*
;
Retrospective Studies
;
Pregnancy Complications/epidemiology*
;
Cerebral Hemorrhage
10.Effect of Xiaoxuming Decoction on synaptic plasticity following acute cerebral ischemia-reperfusion in rats.
Xue-Qin FU ; Rui LAN ; Yong ZHANG ; Man-Man WANG ; Xu-Huan ZOU ; Wei-Wei WANG
China Journal of Chinese Materia Medica 2023;48(14):3882-3889
This study aims to explore the effect of Xiaoxuming Decoction on synaptic plasticity in rats with acute cerebral ischemia-reperfusion. A rat model of cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion(MCAO). Rats were randomly assigned into a sham group, a MCAO group, and a Xiaoxuming Decoction(60 g·kg~(-1)·d~(-1)) group. The Longa score was rated to assess the neurological function of rats with cerebral ischemia for 1.5 h and reperfusion for 24 h. The 2,3,5-triphenyltetrazolium chloride(TTC) staining and hematoxylin-eosin(HE) staining were employed to observe the cerebral infarction and the pathological changes of brain tissue after cerebral ischemia, respectively. Transmission electron microscopy was employed to detect the structural changes of neurons and synapses in the ischemic penumbra, and immunofluorescence, Western blot to determine the expression of synaptophysin(SYN), neuronal nuclei(NEUN), and postsynaptic density 95(PSD95) in the ischemic penumbra. The experimental results showed that the modeling increased the Longa score and led to cerebral infarction after 24 h of ischemia-reperfusion. Compared with the model group, Xiaoxuming Decoction intervention significantly decreased the Longa score and reduced the formation of cerebral infarction area. The modeling led to the shrinking and vacuolar changes of nuclei in the brain tissue, disordered cell arrangement, and severe cortical ischemia-reperfusion injury, while the pathological damage in the Xiaoxuming Decoction group was mild. The modeling blurred the synaptic boundaries and broadened the synaptic gap, while such changes were recovered in the Xiaoxuming Decoction group. The modeling decreased the fluorescence intensity of NEUN and SYN, while the intensity in Xiaoxuming Decoction group was significantly higher than that in the model group. The expression of SYN and PSD95 in the ischemic penumbra was down-regulated in the model group, while such down-regulation can be alleviated by Xiaoxuming Decoction. In summary, Xiaoxuming Decoction may improve the synaptic plasticity of ischemic penumbra during acute cerebral ischemia-reperfusion by up-regulating the expression of SYN and PSD95.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Brain Ischemia/drug therapy*
;
Reperfusion Injury/metabolism*
;
Infarction, Middle Cerebral Artery
;
Neuronal Plasticity
;
Reperfusion

Result Analysis
Print
Save
E-mail