2.Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others.
Chenyu PANG ; Yuqing ZHOU ; Shihui HAN
Neuroscience Bulletin 2024;40(2):157-170
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Adult
;
Humans
;
Brain Mapping
;
Pain
;
Empathy
;
Racism
;
Gyrus Cinguli/physiology*
;
Magnetic Resonance Imaging
;
Brain/physiology*
3.Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development.
Tianyong XU ; Yunying WU ; Yi ZHANG ; Xi-Nian ZUO ; Feiyan CHEN ; Changsong ZHOU
Neuroscience Bulletin 2024;40(1):50-64
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Child
;
Humans
;
Cognitive Training
;
Magnetic Resonance Imaging
;
Brain
;
Brain Mapping
;
Motor Cortex
4.Temporal-spatial Generation of Astrocytes in the Developing Diencephalon.
Wentong HONG ; Pifang GONG ; Xinjie PAN ; Zhonggan REN ; Yitong LIU ; Guibo QI ; Jun-Liszt LI ; Wenzhi SUN ; Woo-Ping GE ; Chun-Li ZHANG ; Shumin DUAN ; Song QIN
Neuroscience Bulletin 2024;40(1):1-16
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Mice
;
Animals
;
Astrocytes
;
Neuroglia/physiology*
;
Diencephalon
;
Brain
;
Neurons
;
Mammals
5.Effects of electroacupuncture on cardiac function and local field potential of sensory and motor cortices in mice with stress cardiomyopathy.
Hao-Sheng WU ; Hang SU ; Chao ZHU ; Wen-Hui WANG ; Sheng-Bing WU ; Shuai CUI ; Mei-Qi ZHOU
Chinese Acupuncture & Moxibustion 2023;43(4):379-389
OBJECTIVE:
To observe the effects of electroacupuncture (EA) on cardiac function and local field potential (LFP) in sensory and motor cortices in mice with stress cardiomyopathy (SC), and to explore the possible mechanism of EA in improving SC.
METHODS:
Twenty-seven female C57BL/6 mice were randomized into a blank group, a model group and an EA group, 9 mice in each group. In the model group and the EA group, SC model was established by continuous intraperitoneal injection of isoproterenol (ISO) for 14 days. At the same time of modeling, EA was applied at "Neiguan" (PC 6) and "Shenmen" (HT 7) in the EA group, with disperse-dense wave, in frequency of 2 Hz/15 Hz, 15 min each time, once a day for 14 days. After intervention, the total movement distance, the number of crossing grid and the number of crossing central grid of open field test within 5 minutes were observed; the left ventricular function indexes (left ventricular diameter of end-diastole [LVIDd], left ventricular diameter of end-systole [LVIDs], left ventricular volume of end-diastole [LVEDV], left ventricular volume of end-systole [LVESV], ejection fraction [EF] and fraction shortening [FS]) were detected by echocardiography; the changes in ST-segment amplitude and PR interval of electrocardiogram were observed; the morphology of myocardial tissue was observed by HE staining; the serum levels of cortisol (CORT), cardiac troponin T (cTnT) and brain natriuretic peptide (BNP) were detected by ELISA; the changes of LFP in sensory and motor cortices were recorded by Plexon multi-channel acquisition system.
RESULTS:
Compared with the blank group, in the model group, the total movement distance, the number of crossing grid and the number of crossing central grid of open field test were decreased (P<0.05); LVIDd, LVIDs, LVEDV and LVESV were increased (P<0.05), EF and FS were decreased (P<0.05); ST-segment amplitude was increased (P<0.05) and PR interval was prolonged (P<0.05); irregular myocardial fiber arrangement, interstitial edema and inflammatory cell infiltration were observed; the serum levels of CORT, cTnT and BNP were increased (P<0.05); in the sensory cortex, the ratios of delta, theta, alpha and beta frequency bands were increased (P<0.05), the maximum energy spectrum of theta and beta frequency bands was increased (P<0.05), the power spectral density (PSD) of delta, theta, alpha, beta and gamma frequency bands was increased (P<0.05); in the motor cortex, the ratios of delta, theta, alpha and beta frequency bands were increased (P<0.05), the maximum energy spectrum as well as PSD of delta, theta, alpha, beta and gamma frequency bands were increased (P<0.05). Compared with model group, in the EA group, the total movement distance, the number of crossing grid and the number of crossing central grid of open field test were increased (P<0.05); LVIDd, LVIDs, LVEDV and LVESV were decreased (P<0.05), EF and FS were increased (P<0.05); ST-segment amplitude was decreased (P<0.05), and the PR interval was shortened (P<0.05); myocardial fiber injury and inflammatory cell infiltration were reduced; the serum levels of CORT, cTnT and BNP were decreased (P<0.05); in the sensory cortex, the ratios of theta, alpha and beta frequency bands were decreased (P<0.05), the ratio of gamma frequency band was increased (P<0.05), the maximum energy spectrum of theta frequency band as well as the PSD of theta, alpha, beta and gamma frequency bands were decreased (P<0.05); in the motor cortex, the ratios of theta, alpha and beta frequency bands were decreased (P<0.05) and the ratio of gamma frequency band was increased (P<0.05), the maximum energy spectrum of delta frequency band was increased (P<0.05), the maximum energy spectrum of theta frequency band as well as the PSD of theta and gamma frequency bands were decreased (P<0.05).
CONCLUSION
EA can improve cardiac function in mice with stress cardiomyopathy, and its mechanism may be related to the regulation of local field potentials in sensory and motor cortices.
Female
;
Mice
;
Animals
;
Electroacupuncture
;
Takotsubo Cardiomyopathy
;
Motor Cortex
;
Mice, Inbred C57BL
;
Myocardium
6.Increased functional connectivity of amygdala subregions in patients with drug-naïve panic disorder and without comorbidities.
Ping ZHANG ; Xiangyun YANG ; Yun WANG ; Huan LIU ; Limin MENG ; Zijun YAN ; Yuan ZHOU ; Zhanjiang LI
Chinese Medical Journal 2023;136(11):1331-1338
BACKGROUND:
Amygdala plays an important role in the neurobiological basis of panic disorder (PD), and the amygdala contains different subregions, which may play different roles in PD. The aim of the present study was to examine whether there are common or distinct patterns of functional connectivity of the amygdala subregions in PD using resting-state functional magnetic resonance imaging and to explore the relationship between the abnormal spontaneous functional connectivity patterns of the regions of interest (ROIs) and the clinical symptoms of PD patients.
METHODS:
Fifty-three drug-naïve, non-comorbid PD patients and 70 healthy controls (HCs) were recruited. Seed-based resting-state functional connectivity (rsFC) analyses were conducted using the bilateral amygdalae and its subregions as the ROI seed. Two samples t test was performed for the seed-based Fisher's z -transformed correlation maps. The relationship between the abnormal spontaneous functional connectivity patterns of the ROIs and the clinical symptoms of PD patients was investigated by Pearson correlation analysis.
RESULTS:
PD patients showed increased rsFC of the bilateral amygdalae and almost all the amygdala subregions with the precuneus/posterior cingulate gyrus compared with the HC group (left amygdala [lAMY]: t = 4.84, P <0.001; right amygdala [rAMY]: t = 4.55, P <0.001; left centromedial amygdala [lCMA]: t = 3.87, P <0.001; right centromedial amygdala [rCMA]: t = 3.82, P = 0.002; left laterobasal amygdala [lBLA]: t = 4.33, P <0.001; right laterobasal amygdala [rBLA]: t = 4.97, P <0.001; left superficial amygdala [lSFA]: t = 3.26, P = 0.006). The rsFC of the lBLA with the left angular gyrus/inferior parietal lobule remarkably increased in the PD group ( t = 3.70, P = 0.003). And most of the altered rsFCs were located in the default mode network (DMN). A significant positive correlation was observed between the severity of anxiety and the rsFC between the lSFA and the left precuneus in PD patients ( r = 0.285, P = 0.039).
CONCLUSIONS
Our research suggested that the increased rsFC of amygdala subregions with DMN plays an important role in the pathogenesis of PD. Future studies may further explore whether the rsFC of amygdala subregions, especially with the regions in DMN, can be used as a biological marker of PD.
Humans
;
Panic Disorder
;
Magnetic Resonance Imaging/methods*
;
Amygdala
;
Gyrus Cinguli
;
Comorbidity
7.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
8.SGK1 as a therapeutic target for central nervous system diseases.
Ya-Kang XING ; Wei LUO ; Meng-Yao FAN ; Ya-Wei TAN ; Xiao LI
Acta Physiologica Sinica 2023;75(3):451-464
Serum and glucocorticoid-regulated kinase 1 (SGK1) plays an important role in the physiological processes of hormone release, neuronal excitation and cell proliferation. SGK1 also participates in the pathophysiological processes of inflammation and apoptosis in the central nervous system (CNS). Increasing evidence demonstrates that SGK1 may serve as a target of the intervention of neurodegenerative diseases. In this article, we summarize the recent progress on the role and molecular mechanisms of SGK1 in the regulation of the function of the CNS. We also discuss the potential of newly discovered SGK1 inhibitors in the treatment of CNS diseases.
Humans
;
Cell Proliferation
;
Central Nervous System Diseases/drug therapy*
;
Inflammation
;
Protein Serine-Threonine Kinases/physiology*
9.Effects of intranasal administration of tripterygium glycoside-bearing liposomes on behavioral cognitive impairment of mice induced by central nervous system inflammation.
Min YAN ; Lan ZHANG ; Lu-Lu ZHANG ; Zhen-Qiang ZHANG ; Hua-Hui ZENG ; Xiang-Xiang WU
China Journal of Chinese Materia Medica 2023;48(9):2426-2434
Tripterygium glycosides liposome(TPGL) were prepared by thin film-dispersion method, which were optimized accor-ding to their morphological structures, average particle size and encapsulation rate. The measured particle size was(137.39±2.28) nm, and the encapsulation rate was 88.33%±1.82%. The mouse model of central nervous system inflammation was established by stereotaxic injection of lipopolysaccharide(LPS). TPGL and tripterygium glycosides(TPG) were administered intranasally for 21 days. The effects of intranasal administration of TPG and TPGL on behavioral cognitive impairment of mice due to LPS-induced central ner-vous system inflammation were estimated by animal behavioral tests, hematoxylin-eosin(HE) staining of hippocampus, real-time quantitative polymerase chain reaction(RT-qPCR) and immunofluorescence. Compared with TPG, TPGL caused less damage to the nasal mucosa, olfactory bulb, liver and kidney of mice administered intranasally. The behavioral performance of treated mice was significantly improved in water maze, Y maze and nesting experiment. Neuronal cell damage was reduced, and the expression levels of inflammation and apoptosis related genes [tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), BCL2-associated X(Bax), etc.] and glial activation markers [ionized calcium binding adaptor molecule 1(IBA1) and glial fibrillary acidic protein(GFAP)] were decreased. These results indicated that liposome technique combined with nasal delivery alleviated the toxic side effects of TPG, and also significantly ameliorated the cognitive impairment of mice induced by central nervous system inflammation.
Mice
;
Animals
;
Tripterygium
;
Liposomes
;
Glycosides/therapeutic use*
;
Administration, Intranasal
;
Lipopolysaccharides
;
Central Nervous System
;
Cognitive Dysfunction/drug therapy*
;
Inflammation/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cardiac Glycosides
10.Effects of C10orf10 on growth and prognosis of glioma under hypoxia.
Yuanbing CHEN ; Miao TANG ; Hui LI ; Jun HUANG
Journal of Central South University(Medical Sciences) 2023;48(4):499-507
OBJECTIVES:
Glioma is the most common malignant tumor in the central nervous system, and the hypoxic microenvironment is prevalent in solid tumors. This study aims to investigate the up-regulation of genes under the condition of hypoxia and their roles in glioma growth, as well as their impact on glioma prognosis.
METHODS:
The hypoxia-related dataset with glioma was screened in the Gene Expression Omnibus database (GEO), and the differentially expressed genes were analyzed between hypoxia and normoxia through bioinformatics, and chromosome 10 open reading frame 10 (C10orf10) was verified and screened in hypoxia-treated cells through real-time PCR and Western blotting. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets were downloaded to analyze the mRNA expression of C10orf10 in different grades of glioma and its impact on prognosis. The glioma specimens and follow-up data of 68 gliomas who underwent surgical treatment in Xiangya Hospital of Central South University from March 2017 to January 2021 were collected, and real-time PCR was used to detect the mRNA expression of C10orf10 in different grades of glioma, and the Kaplan-Meier method was used to analyze the relationship between the expression C10orf10 and prognosis. The glioma cells, which could interfere the expression of C10orf10, were constructed, and the effect of C10orf10 on the proliferation of glioma cells was evaluated by cell counting kit-8 (CCK-8) and colony formation assays.
RESULTS:
Compared with the condition of normoxia, the expression levels of C10orf10 mRNA and protein were significantly up-regulated in glioma cells under hypoxia (P<0.001), and the mRNA expression level of C10orf10 in glioma tissues was up-regulated with the increase of WHO grade in glioma (P<0.001). Based on Kaplan-Meier survival analysis, the higher the mRNA expression level of C10orf10 was, the shorter the survival time of the patient was (P<0.05). And the expression of C10orf10 mRNA was higher in recurrent gliomas than that in primary gliomas in the CGGA database (P<0.001). Knockdown of C10orf10 could significantly inhibit the growth of glioma cells both under hypoxia and normoxia (both P<0.001).
CONCLUSIONS
The expression level of C10orf10 can promote the proliferation and prognosis of glioma, which is expected to become a prognostic marker and therapeutic target for glioma.
Humans
;
Central Nervous System
;
Glioma/genetics*
;
Hypoxia
;
Neoplasm Recurrence, Local
;
Prognosis
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail