1.Predictive Value of Peripheral Blood cfDNA Combined with IL-10 in Central Nervous System Infiltration of Diffuse Large B-Cell lymphoma.
Yuan ZHANG ; Li-Hua WANG ; Yan GUO ; Guo-Qing LYU ; Sun WU ; Jing-Hang ZHANG
Journal of Experimental Hematology 2025;33(4):1063-1068
OBJECTIVE:
To investigate the predictive value of circulating free DNA (cfDNA) combined with interleukin 10 (IL-10) in predicting central nervous system infiltration (CNSI) in diffuse large B-cell lymphoma (DLBCL).
METHODS:
The clinical data of 63 patients with DLBCL in our hospital from May 2021 to April 2023 were retrospectively analyzed. The 63 patients were divided into CNSI group (15 cases) and non-CNSI group (48 cases) base on whether CNSI occurred. The age, sex, Ann Arbor stage, ECOG score, IPI risk, CNS-IPI risk, number of extranodal sites involved, bone marrow involvement, hypertrophic disease, B symptoms, source cells, glucose quantification, Pandy test, cerebrospinal fluid (CSF) chlorine, CSF nucleated cell count, CSF protein, peripheral blood cfDNA, and IL-10 status were compared between the two groups. The correlation between cfDNA, IL-10 in peripheral blood and CSF protein was analyzed by Pearson correlation analysis. Receiver operating characteristic (ROC) curve was used to analyze the predictive value of peripheral blood cfDNA and IL-10 on secondary CNSI in DLBCL patients. The last follow-up was on November 30, 2023. Kaplan-Meier method was used to calculate the time of secondary CNSI in the non-CNSI group.
RESULTS:
The IPI risk, CNS-IPI risk, number of extranodal sites involved, and CSF protein in the CNSI group were significantly higher than those in the non-CNSI group (all P <0.05). The levels of cfDNA and IL-10 in peripheral blood of CNSI group were significantly higher than those of non-CNSI group (both P <0.01). cfDNA and IL-10 in peripheral blood were both positively correlated with CSF protein (r =0.402 4, 0.315 1). ROC curve analysis showed that peripheral blood cfDNA and IL-10 had certain predictive value for CNSI, and the area under the curve (AUC) was 0.829 and 0.742, respectively. The AUC of the combined detection was 0.910, with a sensitivity of 80.00% and a specificity of 93.70%. The diagnostic efficacy was significantly higher than that of the two prediction values alone. The median follow-up time was 20 (6-31) months. Non-CNSI patients were grouped based on peripheral blood cfDNA combined with IL-10 positive or negative pairs. The time of secondary CNSI in positive group was significantly shorter than that in negative group (P <0.05).
CONCLUSION
cfDNA and IL-10 in peripheral blood of DLBCL patients with CNSI are significantly increased, and the combined detection of cfDNA and IL-10 has good predictive value for CNSI.
Humans
;
Interleukin-10/blood*
;
Lymphoma, Large B-Cell, Diffuse/blood*
;
Retrospective Studies
;
Female
;
Male
;
Cell-Free Nucleic Acids/blood*
;
Middle Aged
;
ROC Curve
;
Prognosis
;
Central Nervous System Neoplasms
;
Central Nervous System/pathology*
;
Adult
;
Predictive Value of Tests
3.Influence of Different Therapies on EGFR Mutants by Circulating Cell-free DNA of Lung Adenocarcinoma and Prognosis.
Fei SU ; Ke ZHENG ; Yiyun FU ; Qian WU ; Yuan TANG ; Weiya WANG ; Lili JIANG
Chinese Journal of Lung Cancer 2018;21(5):389-396
BACKGROUND:
Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy.
METHODS:
ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed.
RESULTS:
The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed by survival analyses. Based on plasma cfDNA results, patients with T790M mutant had significantly worse progression-free survival (PFS) and overall survival (OS).
CONCLUSIONS
For EGFR testing, ARMS-PCR on plasma cfDNA is a promising methodology with the highest specificity and effective sensitivity. It is useful for EGFR testing in patients before treatment, especially the late-stage patients. Simultaneously, plasma cfDNA could be used to monitor the drug resistant mutation, T790M status and predict prognosis after targeted therapy.
Adenocarcinoma
;
blood
;
drug therapy
;
genetics
;
mortality
;
Adenocarcinoma of Lung
;
Adult
;
Aged
;
Aged, 80 and over
;
Cell-Free Nucleic Acids
;
blood
;
ErbB Receptors
;
genetics
;
Female
;
Humans
;
Lung Neoplasms
;
blood
;
drug therapy
;
genetics
;
mortality
;
Male
;
Middle Aged
;
Molecular Targeted Therapy
;
Mutation, Missense
;
Prognosis
4.Non-invasive prenatal diagnosis for beta-thalassemia by detecting paternal CD41-42 mutation in cell-free DNA derived from maternal plasma with droplet digital PCR.
Yijia ZHANG ; Xiaoqian GONG ; Yi HE ; Lichan HUANG ; Qiang ZHANG ; Yanhui LIU ; Jiufeng LI ; Yajun CHEN ; Wanjun ZHOU
Chinese Journal of Medical Genetics 2018;35(6):787-790
OBJECTIVE:
To establish a non-invasive method for beta-thalassemia by detecting parental CD41-42 mutation in cell-free DNA derived from maternal plasma with droplet digital PCR (ddPCR).
METHODS:
Beta-actin gene and beta-thalassemia gene CD41-42 mutation were respectively set as the reference and target sequences. A novel method was established based on Bio-Rad ddPCR technique with specific primers and TaqMan probes for the two genes. The accuracy, sensitivity and detective linearity range of the developed method were evaluated by detection of the target gene gradient concentration samples. The applicability was also evaluated by testing 20 maternal plasma samples.
RESULTS:
The ddPCR method could accurately detect the beta-thalassemia CD41-42 mutation in cell-free DNA derived from maternal plasma. Within the target sequence concentration ratio of 5.00%-0.50%, the relative errors were all < 0.05, the linear regression equation was Y=1.0101-X-0.0071 and R=0.9994. The results of 20 maternal plasma cell-free DNA samples were all consistent with those of the follow-up testing.
CONCLUSION
A ddPCR method for detecting parental CD41-42 mutation in cell-free DNA from maternal plasma was developed. The method is simple, rapid, accurate, and can be applied for non-invasive prenatal diagnosis for couples simultaneously carrying the CD41-42 mutation.
Cell-Free Nucleic Acids
;
DNA
;
blood
;
Female
;
Humans
;
Mutation
;
Polymerase Chain Reaction
;
Pregnancy
;
Prenatal Diagnosis
;
methods
;
beta-Thalassemia
;
diagnosis
;
genetics
5.Advanced Glycation End Products and Diabetic Complications.
Varun Parkash SINGH ; Anjana BALI ; Nirmal SINGH ; Amteshwar Singh JAGGI
The Korean Journal of Physiology and Pharmacology 2014;18(1):1-14
During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.
Aging
;
Arthritis, Rheumatoid
;
Blood Proteins
;
Cardiomyopathies
;
Cataract
;
Cell Membrane
;
Collagen
;
Diabetes Complications*
;
Diabetes Mellitus
;
Fibrinogen
;
Free Radicals
;
Gene Expression
;
Globulins
;
Glucose
;
Glycosylation End Products, Advanced*
;
Inflammation
;
Molecular Conformation
;
Nucleic Acids
;
Osteoporosis
;
Oxidative Stress

Result Analysis
Print
Save
E-mail