1.CAR-based cell therapies for systemic lupus erythematosus.
Yiyang WANG ; Liangjing LU ; Shuang YE ; Qiong FU
Chinese Medical Journal 2025;138(5):523-530
The remarkable efficacy of chimeric antigen receptor (CAR) T cell therapy in hematological malignancies has provided a solid basis for the therapeutic concept, wherein specific pathogenic cell populations can be eradicated by means of targeted recognition. During the past few years, CAR-based cell therapies have been extensively investigated in preclinical and clinical research across various non-tumor diseases, with particular emphasis in the treatment of autoimmune diseases (ADs), yielding significant advancements. The recent deployment of CD19-directed CAR T cells has induced long-lasting, drug-free remission in patients with systemic lupus erythematosus (SLE) and other systemic ADs, alongside a more profound immune reconstruction of B cell repertoire compared with conventional immunosuppressive agents and B cell-targeting biologics. Despite the initial success achieved by CAR T cell therapy, it is critical to acknowledge the divergences in its application between cancer and ADs. Through examining recent clinical studies and ongoing research, we highlight the transformative potential of this therapeutic approach in the treatment of SLE, while also addressing the challenges and future directions necessary to enhance the long-term efficacy and safety of CAR-based cell therapies in clinical practice.
Humans
;
Lupus Erythematosus, Systemic/immunology*
;
Receptors, Chimeric Antigen/metabolism*
;
Immunotherapy, Adoptive/methods*
;
Cell- and Tissue-Based Therapy/methods*
;
Animals
;
T-Lymphocytes/immunology*
2.Advances in gene and cellular therapeutic approaches for Huntington's disease.
Xuejiao PIAO ; Dan LI ; Hui LIU ; Qing GUO ; Yang YU
Protein & Cell 2025;16(5):307-337
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and nonpharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Huntington Disease/pathology*
;
Humans
;
Genetic Therapy/methods*
;
Animals
;
Huntingtin Protein/genetics*
;
Cell- and Tissue-Based Therapy/methods*
3.Cell therapy for end-stage liver disease: Current state and clinical challenge.
Lin ZHANG ; Yuntian DENG ; Xue BAI ; Xiao WEI ; Yushuang REN ; Shuang CHEN ; Hongxin DENG
Chinese Medical Journal 2024;137(23):2808-2820
Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD. For instance, hepatocytes derived from donor livers or stem cells can be engrafted and multiplied in the liver, substituting the host hepatocytes and rebuilding the liver parenchyma. Stem cell therapy, especially mesenchymal stem cell therapy, has been widely proved to restore liver function and alleviate liver injury in patients with severe liver disease, which has contributed to the clinical application of cell therapy. In this review, we discussed the types of cells used to treat ESLD and their therapeutic mechanisms. We also summarized the progress of clinical trials around the world and provided a perspective on cell therapy.
Humans
;
Cell- and Tissue-Based Therapy/methods*
;
End Stage Liver Disease/therapy*
;
Hepatocytes
;
Mesenchymal Stem Cell Transplantation
;
Stem Cell Transplantation
4.Clinical development of chimeric antigen receptor-T cell therapy for hematological malignancies.
Chinese Medical Journal 2023;136(19):2285-2296
Cellular therapies have revolutionized the treatment of hematological malignancies since their conception and rapid development. Chimeric antigen receptor (CAR)-T cell therapy is the most widely applied cellular therapy. Since the Food and Drug Administration approved two CD19-CAR-T products for clinical treatment of relapsed/refractory acute lymphoblastic leukemia and diffuse large B cell lymphoma in 2017, five more CAR-T cell products were subsequently approved for treating multiple myeloma or B cell malignancies. Moreover, clinical trials of CAR-T cell therapy for treating other hematological malignancies are ongoing. Both China and the United States have contributed significantly to the development of clinical trials. However, CAR-T cell therapy has many limitations such as a high relapse rate, adverse side effects, and restricted availability. Various methods are being implemented in clinical trials to address these issues, some of which have demonstrated promising breakthroughs. This review summarizes developments in CAR-T cell trials and advances in CAR-T cell therapy.
Humans
;
Receptors, Chimeric Antigen
;
Receptors, Antigen, T-Cell/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Hematologic Neoplasms/therapy*
;
Multiple Myeloma/etiology*
;
Cell- and Tissue-Based Therapy
5.Progress in Research and Application of CAR-T Cell Therapy in T-Lymphocyte Tumors --Review.
Journal of Experimental Hematology 2023;31(6):1894-1898
T-lymphocyte tumors are a group of diseases containing various types of lymphatic system tumors, with strong heterogeneity and poor clinical outcomes. Chimeric antigen receptor T (CAR-T) cell therapy, as a new immune cell therapy, has made a breakthrough in the field of B-lymphocyte tumors. People are interested in the application prospect of this technique in the field of T-lymphocyte tumors. Some studies have shown that CAR-T cell therapy has made some progress in the treatment of T-lymphocyte tumors, and CAR-T for some targets has entered the stage of clinical trials. However, due to the characteristics of T cells, there are also many challenges. This article reviews the research and application of CAR-T cell therapy in T-lymphocyte tumors.
Humans
;
T-Lymphocytes
;
Receptors, Chimeric Antigen/metabolism*
;
Neoplasms/metabolism*
;
Immunotherapy, Adoptive/methods*
;
Cell- and Tissue-Based Therapy
6.Long-term follow-up of humanized and murine CD19 CAR-T-cell therapy for B-cell acute lymphoblastic leukemia.
Meng Yi DU ; Yan Qiang ZHANG ; Dan Ying LIAO ; Wei XIE ; Wei XIONG ; Heng MEI ; Yu HU
Chinese Journal of Hematology 2023;44(10):793-799
Objective: Murine CD19 chimeric antigen receptor T-cell (CAR-T) products have been approved for the treatment of refractory/relapsed (R/R) B-cell acute lymphocytic leukemia (B-ALL) ; moreover, humanized products are also undergoing clinical trials. This study aimed to explore the differences in safety and short- and long-term follow-up efficacy between humanized and murine CD19 CAR-T-cells for treating relapsed and refractory B-ALL. Methods: Clinical data of 80 patients with R/R B-ALL treated with CD19-targeted CAR-T-cells at the Union Hospital of Tongji Medical College of Huazhong University of Science and Technology between May 2016 and March 2023 were analyzed, which included 31 patients with murine CAR-T and 49 with humanized products. Results: The proportion of patients with cytokine-release syndrome (CRS) in the murine and humanized groups was 63.1% and 65.3%, respectively. Moreover, a higher proportion of patients suffered from severe CRS in the murine group than in the humanized CAR-T group (19.4% vs 8.2%, P=0.174). Furthermore, one patient per group died of grade 5 CRS. The incidence of grade 1-2 immune effector cell-associated neurotoxicity syndrome (ICANS) was 12.9% and 6.1%, respectively; severe ICANS were not observed. Among patients receiving murine CAR-T-cells, an overall response (OR) was observed in 74.2%. Conversely, the OR rate of patients receiving humanized CAR-T-cells was 87.8%. During the median follow-up time of 10.5 months, the median recurrence-free survival (RFS) of patients with murine CAR-T-cells was 12 months, which was as long as that of patients with humanized CAR-T-cells. The median overall survival (OS) were not reached in both groups. Of the 45 patients with a bone marrow burden over 20% at baseline, humanized CAR-T therapy was associated with a significantly improved RFS (43.25% vs 33.33%, P=0.027). Bridging transplantation was an independent factor in prolonging OS (χ(2)=8.017, P=0.005) and PFS (χ(2)=6.584, P=0.010). Common risk factors, such as age, high proportion of bone marrow blasts, and BCR-ABL fusion gene expression, had no significant effect on patients' long-term follow-up outcomes. Three patients reached complete remission after reinfusion of humanized CAR-T-cells. However, one patient relapsed one month after his second infusion of murine CAR-T-cells. Conclusions: The results indicate that humanized CAR-T therapy showed durable efficacy in patients with a higher tumor burden in the bone marrow without any influence on safety. Moreover, it could overcome immunogenicity-induced CAR-T resistance, providing treatment options for patients who were not treated successfully with CAR-T therapies.
Animals
;
Humans
;
Mice
;
Antigens, CD19
;
Burkitt Lymphoma/drug therapy*
;
Cell- and Tissue-Based Therapy
;
Follow-Up Studies
;
Immunotherapy, Adoptive
;
Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy*
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Receptors, Chimeric Antigen
7.Clinical analysis of long-term survival and influencing factors of chimeric antigen receptor T-cell therapy in relapsed/refractory acute B-cell lymphoblastic leukemia.
Yi WANG ; Qiu Ying GAO ; Hui WANG ; Ding ZHANG ; Ying GAO ; Ying Di MIAO ; Xin Hui ZHAI ; Xing Xing HU ; Xin Li RU ; Wei Hua ZHANG
Chinese Journal of Hematology 2023;44(10):800-804
Objective: To analyze the survival and influencing factors of chimeric antigen receptor (CAR) T-cell therapy in relapsed/refractory acute B-cell lymphoblastic leukemia (R/R B-ALL) . Methods: Clinical information of patients who received CAR-T-cell therapy and achieved complete remission of R/R B-ALL between May 2015 and June 2018 at the Shaanxi Provincial People's Hospital was obtained. Kaplan-Meier analysis was used to evaluate the overall survival (OS) and leukemia-free survival (LFS) times of patients, and Cox regression analysis was performed to analyze the prognostic factors that affect patient survival after CAR-T therapy. Results: Among the 38 patients with R/R B-ALL, 21 were men, with a median age of 25 (6-59) years and a median OS time of 18 (95% CI 3-33) months. Multivariate Cox regression analysis showed that positive MLL-AF4 fusion gene expression was an independent risk factor for OS and LFS (OS: HR=4.888, 95% CI 1.375-17.374, P=0.014; LFS: HR=6.683, 95% CI 1.815-24.608, P=0.004). Maintenance therapy was a protective factor for OS and LFS (OS: HR=0.153, 95% CI 0.054-0.432, P<0.001; LFS: HR=0.138, 95% CI 0.050-0.382, P<0.001). In patients with MRD negative conversion, LFS benefit (HR=0.209, 95% CI 0.055-0.797, P=0.022) and OS difference was statistically insignificant (P=0.111). Moreover, patients with high tumor burden were risk factors for OS and LFS at the level of 0.1 (OS: HR=2.662, 95% CI 0.987-7.184, P=0.053; LFS: HR=2.452, 95% CI 0.949-6.339, P=0.064) . Conclusion: High tumor burden and high-risk genetics may affect the long-term survival rate of patients with R/R B-ALL receiving CAR-T, and lenalidomide-based maintenance therapy may improve their prognosis.
Male
;
Humans
;
Adult
;
Middle Aged
;
Female
;
Receptors, Chimeric Antigen/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Immunotherapy, Adoptive
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
;
Cell- and Tissue-Based Therapy
8.Analysis of the feasibility and prognostic value of circulating tumor DNA monitoring in detecting gene mutations in patients with diffuse large B-cell lymphoma receiving chimeric antigen receptor T-cell therapy.
Ling Hui ZHOU ; You Qin FENG ; Yong Xian HU ; He HUANG
Chinese Journal of Hematology 2023;44(10):805-812
Objective: To explore the prognostic value of circulating tumor DNA (ctDNA) testing in patients with refractory/relapsed diffuse large B-cell lymphoma (R/R DLBCL) undergoing chimeric antigen receptor T-cell (CAR-T) therapy, and to guide the prevention and subsequent treatment of CAR-T-cell therapy failure. Methods: In this study, 48 patients with R/R DLBCL who received CAR-T-cell therapy at the First Affiliated Hospital of Zhejiang University School of Medicine between December 2017 and March 2022 were included. Furthermore, ctDNA testing of 187 lymphoma-related gene sets was performed on peripheral blood samples obtained before treatment. The patients were divided into complete remission and noncomplete remission groups. The chi-square test and t-test were used to compare group differences, and the Log-rank test was used to compare the differences in survival. Results: Among the patients who did not achieve complete remission after CAR-T-cell therapy for R/R DLBCL, the top ten genes with the highest mutation frequencies were TP53 (41%), TTN (36%), BCR (27%), KMT2D (27%), IGLL5 (23%), KMT2C (23%), MYD88 (23%), BTG2 (18%), MUC16 (18%), and SGK1 (18%). Kaplan-Meier survival analysis revealed that patients with ctDNA mutation genes >10 had poorer overall survival (OS) rate (1-year OS rate: 0 vs 73.8%, P<0.001) and progression-free survival (PFS) rate (1-year PFS rate: 0 vs 51.8%, P=0.011) compared with patients with ctDNA mutation genes ≤10. Moreover, patients with MUC16 mutation positivity before treatment had better OS (2-year OS rate: 56.8% vs 26.7%, P=0.046), whereas patients with BTG2 mutation positivity had poorer OS (1-year OS rate: 0 vs 72.5%, P=0.005) . Conclusion: ctDNA detection can serve as a tool for evaluating the efficacy of CAR-T-cell therapy in patients with R/R DLBCL. The pretreatment gene mutation burden, mutations in MUC16 and BTG2 have potential prognostic value.
Humans
;
Prognosis
;
Receptors, Chimeric Antigen
;
Circulating Tumor DNA/genetics*
;
Feasibility Studies
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Lymphoma, Non-Hodgkin
;
Mutation
;
Cell- and Tissue-Based Therapy
;
Retrospective Studies
;
Immediate-Early Proteins
;
Tumor Suppressor Proteins
9.Efficacy and safety analysis of the zanubrutinib-based bridging regimen in chimeric antigen receptor T-cell therapy for relapsed/refractory diffuse large B-cell lymphoma.
Yan LU ; Hui LIU ; Shi Guang YE ; Li Li ZHOU ; Xiu LUO ; Xiu Yong DANG ; Xiang Gui YUAN ; Wen Bin QIAN ; Ai Bin LIANG ; Ping LI
Chinese Journal of Hematology 2023;44(10):813-819
Objective: To further elucidate the clinical efficacy and safety of a combination regimen based on the BTK inhibitor zebutanil bridging CD19 Chimeric antigen receptor T cells (CAR-T cells) in the treatment of relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL) . Methods: Twenty-one patients with high-risk r/r DLBCL were treated with a zanubrutinib-based regimen bridging CAR-T between June 2020 and June 2023 at the Department of Hematology, Tongji Hospital, Tongji University and the Second Affiliated Hospital of Zhejiang University, and the efficacy and safety were retrospectively analyzed. Results: All 21 patients were enrolled, and the median age was 57 years (range: 38-76). Fourteen patients (66.7%) had an eastern cooperative oncology group performance status score (ECOG score) of ≥2. Eighteen patients (85.7%) had an international prognostic index (IPI) score of ≥3. Three patients (14.3%) had an IPI score of 2 but had extranodal infiltration. Fourteen patients (66.7%) had double-expression of DLBCL and seven (33.3%) had TP53 mutations. With a median follow-up of 24.8 (95% CI 17.0-31.6) months, the objective response rate was 81.0%, and 11 patients (52.4%) achieved complete remission. The median progression-free survival (PFS) was 12.8 months, and the median overall survival (OS) was not reached. The 1-year PFS rate was 52.4% (95% CI 29.8% -74.3%), and the 1-year OS rate was 80.1% (95% CI 58.1% -94.6%). Moreover, 18 patients (85.7%) had grade 1-2 cytokine-release syndrome, and two patients (9.5%) had grade 1 immune effector cell-associated neurotoxicity syndrome. Conclusion: Zanubrutinib-based combination bridging regimen of CAR-T therapy for r/r DLBCL has high efficacy and demonstrated a good safety profile.
Humans
;
Middle Aged
;
Receptors, Chimeric Antigen/therapeutic use*
;
Retrospective Studies
;
Immunotherapy, Adoptive/adverse effects*
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Cell- and Tissue-Based Therapy
;
Antigens, CD19/adverse effects*
10.Characteristics and impact factors of SARS-CoV-2 infection in adult patients with relapsed/refractory B-cell non-Hodgkin lymphoma receiving chimeric antigen receptor T-cell therapy.
Tong GE ; Hui LIU ; Zhen Hao WANG ; Yang CAO ; Yi Cheng ZHANG ; Liang HUANG ; Wen Bin QIAN ; Xiao Xi ZHOU
Chinese Journal of Hematology 2023;44(10):825-831
Objective: To explore the clinical characteristics and treatment of COVID-19 infection in patients with relapsed/refractory B-cell non-Hodgkin lymphoma before and after receiving chimeric antigen receptor T-cell therapy, and study the influencing factors of severe COVID-19 infection in these patients. Methods: The data of 59 patients with relapsed/refractory B-cell non-Hodgkin lymphoma who received chimeric antigen receptor T-cell therapy at the Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University between December 2017 and February 2023, and who were infected with novel coronavirus between December 2022 and February 2023 were retrospectively studied. Patients were divided into light, medium, severe, and critical groups, and the differences between the groups were analyzed using the chi-square test. A univariate logistic regression model was used to evaluate the contribution of each variable and its relationship with severe infection. The chi-square and Fisher's exact tests were used to analyze the differences between the B-cell aplasia and B-cell recovery (BCR) groups. Results: Of the 59 pre- and post-infusion infections, 39 (66.1%) led to mild COVID-19, 9 (15.3%) resulted in moderate COVID-19, 10 (16.9%) resulted in severe COVID-19, and 1 (1.7%) led to critical COVID-19. Moroever, age greater than 55 years, having received autologous hematopoietic stem cell transplantation, progressive disease status, and B-cell aplasia at the time of diagnosis of COVID-19 infection are factors affecting severe infection. Patients with B-cell aplasia had a more severe infection with COVID-19 (P<0.001), a longer duration (P=0.015), a longer antiviral therapy course (P<0.001), and a higher hospitalization rate (P<0.001) than the BCR group. Conclusion: Active prevention and treatment of COVID-19 infection remains a crucial issue requiring urgent attention in managing patients with relapsed/refractory B-cell non-Hodgkin lymphoma treated with chimeric antigen receptor T-cell therapy.
Humans
;
Adult
;
Middle Aged
;
Receptors, Chimeric Antigen
;
Retrospective Studies
;
COVID-19/therapy*
;
SARS-CoV-2
;
Lymphoma, B-Cell/therapy*
;
Cell- and Tissue-Based Therapy

Result Analysis
Print
Save
E-mail