1.Assessment of Benchmark Dose in BEAS-2B Cells by Evaluating the Cell Relative Viability with Particulates in Motorcycle Exhaust
Tao YU ; Xue Yan ZHANG ; Shu Fei LI ; Yu Mei ZHOU ; Bin LI ; Zhong Xu WANG ; Yu Fei DAI ; Sherleen Xue-Fu ADAMSON ; Yu Xin ZHENG ; Ping BIN
Biomedical and Environmental Sciences 2021;34(4):272-281
Objective:
This study aimed to use an air-liquid interface (ALI) exposure system to simulate the inhalation exposure of motorcycle exhaust particulates (MEPs) and then investigate the benchmark dose (BMD) of MEPs by evaluating cell relative viability (CRV) in lung epithelial BEAS-2B cells.
Methods:
The MEPs dose was characterized by measuring the number concentration (NC), surface area concentration (SAC), and mass concentration (MC). BEAS-2B cells were exposed to MEPs at different concentrations
Results:
Our results reveal that BMD of NC and SAC were estimated by the best-fitting Hill model, while MC was estimated by Polynomial model. The BMDL for CRV following ALI exposure to MEPs were as follows: 364.2#/cm
Conclusion
These results indicate that MEPs exposure
Benchmarking/statistics & numerical data*
;
Bronchi/physiology*
;
Cell Line
;
Cell Survival/drug effects*
;
Epithelial Cells/physiology*
;
Humans
;
Motorcycles
;
Particulate Matter/adverse effects*
;
Vehicle Emissions/analysis*
2.Emerging relationship between RNA helicases and autophagy.
Miao-Miao ZHAO ; Ru-Sha WANG ; Yan-Lin ZHOU ; Zheng-Gang YANG
Journal of Zhejiang University. Science. B 2020;21(10):767-778
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Animals
;
Antiviral Agents/pharmacology*
;
Autophagy
;
Beclin-1/metabolism*
;
Carcinogenesis
;
Cell Survival
;
DEAD Box Protein 58/metabolism*
;
Disease Progression
;
Gene Expression Regulation
;
Homeostasis
;
Humans
;
Immune System/physiology*
;
Neoplasms/metabolism*
;
RNA Helicases/metabolism*
;
RNA Splicing
;
Receptors, Immunologic/metabolism*
3.Presence of serum antinuclear antibodies correlating unfavorable overall survival in patients with chronic lymphocytic leukemia.
Qian SUN ; Li WANG ; Hua-Yuan ZHU ; Yi MIAO ; Wei WU ; Jin-Hua LIANG ; Lei CAO ; Yi XIA ; Jia-Zhu WU ; Yan WANG ; Rong WANG ; Lei FAN ; Wei XU ; Jian-Yong LI
Chinese Medical Journal 2019;132(5):525-533
BACKGROUND:
Serum antinuclear antibodies (ANAs) are positive in some patients with chronic lymphocytic leukemia (CLL), but the prognostic value of ANAs remains unknown. The aim of this study was to evaluate the role of ANAs as a prognostic factor in CLL.
METHODS:
This study retrospectively analyzed clinical data from 216 newly diagnosed CLL subjects with ANAs test from 2007 to 2017. Multivariate Cox regression analyses were used to screen the independent prognostic factors related to time to first treatment (TTFT), progression free survival (PFS) and overall survival (OS). Receiver operator characteristic curves and area under the curve (AUC) were utilized to assess the predictive accuracy of ANAs together with other independent factors for OS.
RESULTS:
The incidence of ANAs abnormality at diagnosis was 13.9%. ANAs positivity and TP53 disruption were independent prognostic indicators for OS. The AUC of positive ANAs together with TP53 disruption was 0.766 (95% confidence interval [CI]: 0.697-0.826), which was significantly larger than that of either TP53 disruption (AUC: 0.706, 95% CI: 0.634-0.772, P = 0.034) or positive ANAs (AUC: 0.595, 95% CI: 0.520-0.668, P < 0.001) in OS prediction. Besides, serum positive ANAs as one additional parameter to CLL-international prognostic index (IPI) obtained superior AUCs in predicting CLL OS than CLL-IPI alone.
CONCLUSION
This study identified ANAs as an independent prognostic factor for CLL, and further investigations are needed to validate this finding.
ADP-ribosyl Cyclase 1
;
blood
;
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Antibodies, Antinuclear
;
blood
;
Autoimmunity
;
physiology
;
Female
;
Humans
;
Kaplan-Meier Estimate
;
Leukemia, Lymphocytic, Chronic, B-Cell
;
blood
;
mortality
;
Male
;
Middle Aged
;
Multivariate Analysis
;
Mutation
;
genetics
;
Proportional Hazards Models
;
Retrospective Studies
;
Survival Analysis
;
Tumor Suppressor Protein p53
;
blood
;
Young Adult
;
ZAP-70 Protein-Tyrosine Kinase
;
blood
4.Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice.
Feng HU ; Yu YAN ; Chu-Wang WANG ; Yu LIU ; Jing-Jing WANG ; Fang ZHOU ; Qing-Hai ZENG ; Xiao ZHOU ; Jia CHEN ; Ai-Jun WANG ; Jian-da ZHOU
Chinese journal of integrative medicine 2019;25(3):203-209
OBJECTIVE:
To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism.
METHODS:
Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-β1 (TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated.
RESULTS:
Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01).
CONCLUSION
A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.
Animals
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
biosynthesis
;
Fibroblasts
;
drug effects
;
Humans
;
Male
;
Mice
;
Polysaccharides
;
pharmacology
;
Reishi
;
chemistry
;
Skin
;
drug effects
;
injuries
;
Transforming Growth Factor beta1
;
physiology
;
Wound Healing
;
drug effects
;
beta Catenin
;
physiology
5.Inhibition of autophagy suppresses osteogenic differentiation of stem cells from apical papilla.
Ying HUANG ; Huacui XIONG ; Ke CHEN ; Xiaobin ZHU ; Xiaoping YIN ; Yun LIANG ; Wei LUO ; Qiyin LEI
Journal of Southern Medical University 2019;39(1):106-112
OBJECTIVE:
To investigate the effects of autophagy on osteogenic differentiation of stem cells from the apical papilla (SCAPs) in the presence of tumor necrosis factor- (TNF-) stimulation .
METHODS:
SCAPs treated with TNF- (0, 5, and 10 ng/mL) with or without 5 mmol/L 3-MA were examined for the expression of autophagy marker LC3-Ⅱ using Western blotting. The cells were transfected with GFP-LC3 plasmid and fluorescence microscopy was used for quantitative analysis of intracellular GFP-LC3; AO staining was used to detect the acidic vesicles in the cells. The cell viability was assessed with CCK-8 assays and the cell apoptosis rate was analyzed using flow cytometry. The cells treated with TNF- or with TNF- and 3-MA were cultured in osteogenic differentiation medium for 3 to 14 days, and real- time PCR was used to detect the mRNA expressions of osteogenesis-related genes (ALP, BSP, and OCN) for evaluating the cell differentiation.
RESULTS:
TNF- induced activation of autophagy in cultured SCAPs. Pharmacological inhibition of TNF--induced autophagy by 3-MA significantly decreased the cell viability and increased the apoptosis rate of SCAPs ( < 0.05). Compared with the cells treated with TNF- alone, the cells treated with both TNF- and 3-MA exhibited decreased expressions of the ALP and BSP mRNA on days 3, 7 and 14 during osteogenic induction ( < 0.05) and decreased expression of OCN mRNA on days 3 and 7 during the induction ( < 0.05).
CONCLUSIONS
Autophagy may play an important role during the osteogenic differentiation of SCAPs in the presence of TNF- stimulation.
Autophagy
;
drug effects
;
physiology
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Dental Papilla
;
cytology
;
Green Fluorescent Proteins
;
Humans
;
Osteogenesis
;
physiology
;
Stem Cells
;
drug effects
;
physiology
;
Transfection
;
Tumor Necrosis Factor-alpha
;
administration & dosage
;
antagonists & inhibitors
;
pharmacology
6.Activation of PPARγ pathway enhances cellular anti-oxidant capacity to protect long-term cultured primary rat neural cells from apoptosis.
Huqing WANG ; Jiaxin FAN ; Wanying CHEN ; Zhen GAO ; Guilian ZHANG ; Haiqin WU ; Xiaorui YU
Journal of Southern Medical University 2019;39(1):23-29
OBJECTIVE:
To study the protective effect of enhanced peroxisome proliferator activated receptor γ (PPARγ) pathway against apoptosis of long-term cultured primary nerve cells.
METHODS:
A natural aging model was established in primary rat nerve cells by long-term culture for 22 days. The cells were divided into control group, 0.1, 1.0, 5.0, and 10 μmol/L GW9662 intervention groups, and 0.1, 1.0, 5.0, and 10 μmol/L pioglitazone intervention groups. The cell viability was assessed using MTT assay and the cell morphological changes were observed after the treatments to determine the optimal concentrations of GW9662 and pioglitazone. Double immunofluorescence labeling and flow cytometry were used to observe the changes in the number of viable cells and cell apoptosis following the treatments; immunocytochemical staining was used to assess the changes in the anti-oxidation ability of the treated cells.
RESULTS:
The optimal concentrations of GW9662 and pioglitazone determined based on the cell viability and morphological changes were both 1 μmol/L. Compared with the control group, GW9662 treatment significantly lowered while pioglitazone significantly increased the total cell number and nerve cell counts ( < 0.05), and nerve cells in the cell cultures maintained a constant ratio at about 80% in all the groups ( > 0.05). GW9662 significantly enhanced while pioglitazone significantly lowered the cell apoptosis rates compared with the control group ( < 0.05). GW9662 obviously lowered SOD activity and GSH content in G group ( < 0.05) and increased MDA content in the cells ( < 0.05), and pioglitazone resulted in reverse changes in SOD, GSH and MDA contents in the cells ( < 0.05).
CONCLUSIONS
Activation of PPARγ pathway protects long-term cultured primary nerve cells by enhancing cellular anti-oxidant capacity and reducing cell apoptosis, suggesting a potential strategy for anti-aging treatment of the nervous system through intervention of the PPARγ pathway.
Anilides
;
administration & dosage
;
pharmacology
;
Animals
;
Apoptosis
;
Cell Proliferation
;
Cell Survival
;
Cells, Cultured
;
Cellular Senescence
;
physiology
;
Neurons
;
cytology
;
PPAR gamma
;
metabolism
;
Pioglitazone
;
administration & dosage
;
pharmacology
;
Rats
7.All-trans-retinoic acid generation is an antidotal clearance pathway for all-trans-retinal in the retina.
Qing-Qing XIA ; Ling-Min ZHANG ; Ying-Ying ZHOU ; Ya-Lin WU ; Jie LI
Journal of Zhejiang University. Science. B 2019;20(12):960-971
The present study was designed to analyze the metabolites of all-trans-retinal (atRal) and compare the cytotoxicity of atRal versus its derivative all-trans-retinoic acid (atRA) in human retinal pigment epithelial (RPE) cells. We confirmed that atRA was produced in normal pig neural retina and RPE. The amount of all-trans-retinol (atROL) converted from atRal was about 2.7 times that of atRal-derived atRA after incubating RPE cells with 10 μmol/L atRal for 24 h, whereas atRA in medium supernatant is more plentiful (91 vs. 29 pmol/mL), suggesting that atRA conversion facilitates elimination of excess atRal in the retina. Moreover, we found that mRNA expression of retinoic acid-specific hydroxylase CYP26b1 was dose-dependently up-regulated by atRal exposure in RPE cells, indicating that atRA inactivation may be also initiated in atRal-accumulated RPE cells. Our data show that atRA-caused viability inhibition was evidently reduced compared with the equal concentration of its precursor atRal. Excess accumulation of atRal provoked intracellular reactive oxygen species (ROS) overproduction, heme oxygenase-1 (HO-1) expression, and increased cleaved poly(ADP-ribose) polymerase 1 (PARP1) expression in RPE cells. In contrast, comparable dosage of atRA-induced oxidative stress was much weaker, and it could not activate apoptosis in RPE cells. These results suggest that atRA generation is an antidotal metabolism pathway for atRal in the retina. Moreover, we found that in the eyes of ABCA4-/-RDH8-/- mice, a mouse model with atRal accumulation in the retina, the atRA content was almost the same as that in the wild type. It is possible that atRal accumulation simultaneously and equally promotes atRA synthesis and clearance in eyes of ABCA4-/-RDH8-/- mice, thus inhibiting the further increase of atRA in the retina. Our present study provides further insights into atRal clearance in the retina.
ATP-Binding Cassette Transporters/physiology*
;
Alcohol Oxidoreductases/physiology*
;
Animals
;
Cell Survival/drug effects*
;
Cells, Cultured
;
Humans
;
Inactivation, Metabolic
;
Mice
;
Retina/metabolism*
;
Retinal Pigment Epithelium/metabolism*
;
Swine
;
Tretinoin/pharmacology*
8.Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis.
Ting SHEN ; ; Qing-Qing ZHENG ; Jiang SHEN ; Qiu-Shi LI ; Xing-Hui SONG ; Hong-Bo LUO ; Chao-Yang HONG ; ; Ke YAO
Chinese Medical Journal 2018;131(6):704-712
BackgroundCorneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem cells (ADSCs) have been reported as an important component of regenerative medicine and cell therapy for corneal stromal damage. We have demonstrated that the treatment with ADSCs leads to phenotypic changes in CSCs in vitro. However, the underlying mechanisms of such ADSC-induced changes in CSCs remain unclear.
MethodsADSCs and CSCs were isolated from New Zealand white rabbits and cultured in vitro. An Exosome Isolation Kit, Western blotting, and nanoparticle tracking analysis (NTA) were used to isolate and confirm the exosomes from ADSC culture medium. Meanwhile, the optimal exosome concentration and treatment time were selected. Cell Counting Kit-8 and annexin V-fluorescein isothiocyanate/propidium iodide assays were used to assess the effect of ADSC- derived exosomes on the proliferation and apoptosis of CSCs. To evaluate the effects of ADSC- derived exosomes on CSC invasion activity, Western blotting was used to detect the expression of matrix metalloproteinases (MMPs) and collagens.
Results:ADSCs and CSCs were successfully isolated from New Zealand rabbits. The optimal concentration and treatment time of exosomes for the following study were 100 μg/ml and 96 h, respectively. NTA revealed that the ADSC-derived exosomes appeared as nanoparticles (40-200 nm), and Western blotting confirmed positive expression of CD9, CD81, flotillin-1, and HSP70 versus ADSC cytoplasmic proteins (all P < 0.01). ADSC-derived exosomes (50 μg/ml and 100 μg/ml) significantly promoted proliferation and inhibited apoptosis (mainly early apoptosis) of CSCs versus non-exosome-treated CSCs (all P < 0.05). Interestingly, MMPs were downregulated and extracellular matrix (ECM)-related proteins including collagens and fibronectin were upregulated in the exosome-treated CSCs versus non-exosome-treated CSCs (MMP1: t = 80.103, P < 0.01; MMP2: t = 114.778, P < 0.01; MMP3: t = 56.208, P < 0.01; and MMP9: t = 60.617, P < 0.01; collagen I: t = -82.742, P < 0.01; collagen II: t = -72.818, P < 0.01; collagen III: t = -104.452, P < 0.01; collagen IV: t = -133.426, P < 0.01, and collagen V: t = -294.019, P < 0.01; and fibronectin: t = -92.491, P < 0.01, respectively).
Conclusion:The findings indicate that ADSCs might play an important role in CSC viability regulation and ECM remodeling, partially through the secretion of exosomes.
Adipose Tissue ; cytology ; Animals ; Cell Proliferation ; physiology ; Cell Survival ; physiology ; Cells, Cultured ; Exosomes ; metabolism ; Extracellular Matrix ; metabolism ; Fibroblasts ; cytology ; metabolism ; Matrix Metalloproteinases ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Rabbits
9.Inactivated Sendai Virus Induces ROS-dependent Apoptosis and Autophagy in Human Prostate Cancer Cells.
Miao QIAN ; Hai Ming TAN ; Ning YU ; Tao WANG ; Quan ZHANG
Biomedical and Environmental Sciences 2018;31(4):280-289
OBJECTIVEThe current study aims to investigate the effect of Hemagglutinating virus of Japan envelope (HVJ-E) on induction of apoptosis and autophagy in human prostate cancer PC3 cells, and the underlying mechanisms.
METHODSPC3 cells were treated with HVJ-E at various multiplicity of infection (MOI), and the generated reactive oxygen species (ROS), cell viability, apoptosis, and autophagy were detected, respectively. Next, the role of ROS played in the regulation of HVJ-E-induced apoptosis and autuphagy in PC3 cells were analysed. In the end, the relationship between HVJ-E-induced apoptosis and autuophagy was investigated by using rapamycin and chloroquine.
RESULTSFlow cytometry assay revealed that HVJ-E treatment induced dose-dependent apoptosis and that the JNK and p38 MAPK signaling pathways were involved in HVJ-E-induced apoptosis in PC3 cells. In addition, HVJ-E was able to induce autophagy in PC3 cells via the class III PI3K/beclin-1 pathway. The data also implyed that HVJ-E-triggered autophagy and apoptosis were ROS dependent. When ROS was blocked with N-acetylcysteine (NAC), HVJ-E-induced LC3-II conversion and apoptosis were reversed. Interestingly, HVJ-E-induced apoptosis was significantly increased by an inducer of autophagy, rapamycin pretreatment, both in vitro and in vivo.
CONCLUSIONHVJ-E exerts anticancer effects via autophagic cell death in prostate cancer cells.
Apoptosis ; physiology ; Autophagy ; physiology ; Cell Line, Tumor ; Cell Survival ; Humans ; Male ; Oncolytic Virotherapy ; Prostatic Neoplasms ; metabolism ; Reactive Oxygen Species ; metabolism ; Sendai virus ; immunology ; physiology ; Virus Inactivation
10.Recent progress in smooth muscle autophagy of vascular diseases.
Shi TAI ; Qin ZHOU ; Yanan GUO ; Shenghua ZHOU
Journal of Central South University(Medical Sciences) 2018;43(8):920-928
Autophagy plays a crucial role in maintaining normal structure and vascular function in vivo. When stress-relevant stimuli are involved, the increases of autophagy can protect vascular smooth muscle cells, promote cell survival, and phenotype transformation, as well as reduce calcification. On the contrary, the decrease of autophagy can accelerate cell senescence, resulting in structural changes and dysfunction of vasomotor and vasodilation. However, excessive activation of autophagy can induce the damage of the healthy protein and essential organelles, and even lead to autophagic cell death, accelerating the progression of vascular disease. Thus, the precise targeting of autophagy opens a novel way for treatment of vascular diseases.
Autophagy
;
physiology
;
Cell Survival
;
Cellular Senescence
;
Disease Progression
;
Humans
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
physiology
;
Vascular Diseases
;
pathology
;
therapy

Result Analysis
Print
Save
E-mail