1.Assessment of Benchmark Dose in BEAS-2B Cells by Evaluating the Cell Relative Viability with Particulates in Motorcycle Exhaust
Tao YU ; Xue Yan ZHANG ; Shu Fei LI ; Yu Mei ZHOU ; Bin LI ; Zhong Xu WANG ; Yu Fei DAI ; Sherleen Xue-Fu ADAMSON ; Yu Xin ZHENG ; Ping BIN
Biomedical and Environmental Sciences 2021;34(4):272-281
Objective:
This study aimed to use an air-liquid interface (ALI) exposure system to simulate the inhalation exposure of motorcycle exhaust particulates (MEPs) and then investigate the benchmark dose (BMD) of MEPs by evaluating cell relative viability (CRV) in lung epithelial BEAS-2B cells.
Methods:
The MEPs dose was characterized by measuring the number concentration (NC), surface area concentration (SAC), and mass concentration (MC). BEAS-2B cells were exposed to MEPs at different concentrations
Results:
Our results reveal that BMD of NC and SAC were estimated by the best-fitting Hill model, while MC was estimated by Polynomial model. The BMDL for CRV following ALI exposure to MEPs were as follows: 364.2#/cm
Conclusion
These results indicate that MEPs exposure
Benchmarking/statistics & numerical data*
;
Bronchi/physiology*
;
Cell Line
;
Cell Survival/drug effects*
;
Epithelial Cells/physiology*
;
Humans
;
Motorcycles
;
Particulate Matter/adverse effects*
;
Vehicle Emissions/analysis*
2.Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice.
Feng HU ; Yu YAN ; Chu-Wang WANG ; Yu LIU ; Jing-Jing WANG ; Fang ZHOU ; Qing-Hai ZENG ; Xiao ZHOU ; Jia CHEN ; Ai-Jun WANG ; Jian-da ZHOU
Chinese journal of integrative medicine 2019;25(3):203-209
OBJECTIVE:
To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism.
METHODS:
Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-β1 (TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated.
RESULTS:
Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01).
CONCLUSION
A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.
Animals
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
biosynthesis
;
Fibroblasts
;
drug effects
;
Humans
;
Male
;
Mice
;
Polysaccharides
;
pharmacology
;
Reishi
;
chemistry
;
Skin
;
drug effects
;
injuries
;
Transforming Growth Factor beta1
;
physiology
;
Wound Healing
;
drug effects
;
beta Catenin
;
physiology
3.Inhibition of autophagy suppresses osteogenic differentiation of stem cells from apical papilla.
Ying HUANG ; Huacui XIONG ; Ke CHEN ; Xiaobin ZHU ; Xiaoping YIN ; Yun LIANG ; Wei LUO ; Qiyin LEI
Journal of Southern Medical University 2019;39(1):106-112
OBJECTIVE:
To investigate the effects of autophagy on osteogenic differentiation of stem cells from the apical papilla (SCAPs) in the presence of tumor necrosis factor- (TNF-) stimulation .
METHODS:
SCAPs treated with TNF- (0, 5, and 10 ng/mL) with or without 5 mmol/L 3-MA were examined for the expression of autophagy marker LC3-Ⅱ using Western blotting. The cells were transfected with GFP-LC3 plasmid and fluorescence microscopy was used for quantitative analysis of intracellular GFP-LC3; AO staining was used to detect the acidic vesicles in the cells. The cell viability was assessed with CCK-8 assays and the cell apoptosis rate was analyzed using flow cytometry. The cells treated with TNF- or with TNF- and 3-MA were cultured in osteogenic differentiation medium for 3 to 14 days, and real- time PCR was used to detect the mRNA expressions of osteogenesis-related genes (ALP, BSP, and OCN) for evaluating the cell differentiation.
RESULTS:
TNF- induced activation of autophagy in cultured SCAPs. Pharmacological inhibition of TNF--induced autophagy by 3-MA significantly decreased the cell viability and increased the apoptosis rate of SCAPs ( < 0.05). Compared with the cells treated with TNF- alone, the cells treated with both TNF- and 3-MA exhibited decreased expressions of the ALP and BSP mRNA on days 3, 7 and 14 during osteogenic induction ( < 0.05) and decreased expression of OCN mRNA on days 3 and 7 during the induction ( < 0.05).
CONCLUSIONS
Autophagy may play an important role during the osteogenic differentiation of SCAPs in the presence of TNF- stimulation.
Autophagy
;
drug effects
;
physiology
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Dental Papilla
;
cytology
;
Green Fluorescent Proteins
;
Humans
;
Osteogenesis
;
physiology
;
Stem Cells
;
drug effects
;
physiology
;
Transfection
;
Tumor Necrosis Factor-alpha
;
administration & dosage
;
antagonists & inhibitors
;
pharmacology
4.All-trans-retinoic acid generation is an antidotal clearance pathway for all-trans-retinal in the retina.
Qing-Qing XIA ; Ling-Min ZHANG ; Ying-Ying ZHOU ; Ya-Lin WU ; Jie LI
Journal of Zhejiang University. Science. B 2019;20(12):960-971
The present study was designed to analyze the metabolites of all-trans-retinal (atRal) and compare the cytotoxicity of atRal versus its derivative all-trans-retinoic acid (atRA) in human retinal pigment epithelial (RPE) cells. We confirmed that atRA was produced in normal pig neural retina and RPE. The amount of all-trans-retinol (atROL) converted from atRal was about 2.7 times that of atRal-derived atRA after incubating RPE cells with 10 μmol/L atRal for 24 h, whereas atRA in medium supernatant is more plentiful (91 vs. 29 pmol/mL), suggesting that atRA conversion facilitates elimination of excess atRal in the retina. Moreover, we found that mRNA expression of retinoic acid-specific hydroxylase CYP26b1 was dose-dependently up-regulated by atRal exposure in RPE cells, indicating that atRA inactivation may be also initiated in atRal-accumulated RPE cells. Our data show that atRA-caused viability inhibition was evidently reduced compared with the equal concentration of its precursor atRal. Excess accumulation of atRal provoked intracellular reactive oxygen species (ROS) overproduction, heme oxygenase-1 (HO-1) expression, and increased cleaved poly(ADP-ribose) polymerase 1 (PARP1) expression in RPE cells. In contrast, comparable dosage of atRA-induced oxidative stress was much weaker, and it could not activate apoptosis in RPE cells. These results suggest that atRA generation is an antidotal metabolism pathway for atRal in the retina. Moreover, we found that in the eyes of ABCA4-/-RDH8-/- mice, a mouse model with atRal accumulation in the retina, the atRA content was almost the same as that in the wild type. It is possible that atRal accumulation simultaneously and equally promotes atRA synthesis and clearance in eyes of ABCA4-/-RDH8-/- mice, thus inhibiting the further increase of atRA in the retina. Our present study provides further insights into atRal clearance in the retina.
ATP-Binding Cassette Transporters/physiology*
;
Alcohol Oxidoreductases/physiology*
;
Animals
;
Cell Survival/drug effects*
;
Cells, Cultured
;
Humans
;
Inactivation, Metabolic
;
Mice
;
Retina/metabolism*
;
Retinal Pigment Epithelium/metabolism*
;
Swine
;
Tretinoin/pharmacology*
5.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
OBJECTIVE:
To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
METHODS:
H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
RESULTS:
Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
CONCLUSIONS
Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
Adenosine Triphosphate
;
analysis
;
Apoptosis
;
drug effects
;
Benzyl Alcohols
;
antagonists & inhibitors
;
pharmacology
;
Caspase 3
;
analysis
;
Cell Line
;
Cell Survival
;
drug effects
;
Cyclosporine
;
pharmacology
;
Cytochromes c
;
analysis
;
Glucosides
;
antagonists & inhibitors
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis
6.Lipopolysaccharide Stimulates Surfactant Protein-A in Human Renal Epithelial HK-2 Cells through Upregulating Toll-like Receptor 4 Dependent MEK1/2-ERK1/2-NF-κB Pathway.
Jiao LIU ; Guang LI ; Wen-Jie XIE ; Lu WANG ; Rui ZHANG ; Ke-Sheng HUANG ; Qing-Shan ZHOU ; De-Chang CHEN
Chinese Medical Journal 2017;130(10):1236-1243
BACKGROUNDSurfactant protein-A (SP-A) contributes to the regulation of sepsis-induced acute kidney injury. In a previous study, we demonstrated that the expression of SP-A in the human renal tubular epithelial (HK-2) cells can be stimulated by lipopolysaccharide (LPS). The present study evaluated the possible signal-transducing mechanisms of LPS-induced SP-A biosynthesis in the HK-2 cells.
METHODSTetrazolium salt colorimetry (MTT) assay was used to detect cell viability of HK-2 cells after LPS stimulation on different time points. HK-2 cells were stimulated with 100 ng/ml of LPS for different durations to determine the effects of LPS on SP-A and toll-like receptor 4 (TLR4) messenger RNA (mRNA) expression, as well as phosphorylation of mitogen-activated/extracellular signal-regulated kinase (MEK) 1, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38MAPK), and nuclear factor-kappa B (NF-κB) inhibitor-alpha (IkB-α). Then, HK-2 cells were pretreated with CLI-095, a TLR4 inhibitor, to analyze mRNA and protein levels of SP-A and TLR4 and expression of NF-κB in the cytoplasm and nucleus of HK-2 before LPS exposure.
RESULTSHK-2 cells exposed to 100 ng/ml of LPS for 1, 6, and 24 h did not affect cell viability which showed no toxic effect of 100 ng/ml LPS on cells (P = 0.16); however, the biosynthesis of SP-A mRNA and protein in HK-2 cells was significantly increased (P = 0.02). As to the mechanism, LPS enhanced transmembrane receptor TLR4 protein expression. Sequentially, LPS time dependently augmented phosphorylation of MEK1, ERK1/2, and p38MAPK. In addition, levels of phosphorylated IκB-α and nuclear NF-κB were augmented with LPS exposure for 2 h. LPS-induced SP-A and TLR4 mRNA as well as NF-κB expression were significantly inhibited by pretreatment with CLI-095.
CONCLUSIONSThe present study exhibited that LPS can increase SP-A synthesis in human renal epithelial cells through sequentially activating the TLR4-related MEK1-ERK1/2-NF-κB-dependent pathway.
Cell Line ; Cell Survival ; drug effects ; physiology ; Colorimetry ; Humans ; Kidney ; cytology ; metabolism ; Lipopolysaccharides ; toxicity ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; NF-kappa B ; metabolism ; Pulmonary Surfactant-Associated Protein A ; metabolism ; Sulfonamides ; pharmacology ; Tetrazolium Salts ; chemistry ; Toll-Like Receptor 4 ; antagonists & inhibitors ; metabolism
7.Role of Endoplasmic Reticulum Stress in Silica-induced Apoptosis in RAW264.7 Cells.
Yong Bin HU ; Xia WU ; Xiao Feng QIN ; Lei WANG ; Pin Hua PAN
Biomedical and Environmental Sciences 2017;30(8):591-600
OBJECTIVEWe investigated the role of endoplasmic reticulum stress (ERS) in silica-induced apoptosis in alveolar macrophages in vitro.
METHODSRAW264.7 cells were incubated with 200 μg/mL silica for different time periods. Cell viability was assayed by the MTT assay. Cell apoptosis was evaluated by DAPI staining, flow cytometry analysis, and Western blot analysis of caspase-3. Morphological changes in the endoplasmic reticulum were observed by transmission electron microscopy. The expression of ERS markers binding protein (BiP) and CCAAT-enhancer-binding protein homologous protein (CHOP) was examined by Western blotting and real-time PCR. As an inhibitor of ERS, 4-phenylbutyric acid (4-PBA) was used in the experiments.
RESULTSSilica exposure induced nuclear condensation and caspase-3 expression in RAW264.7 cells. The number of apoptotic cells increased after silica exposure in a time-dependent manner. Silica treatment induced expansion of the endoplasmic reticulum. In addition, the expression of BiP and CHOP increased in silica-stimulated cells. Furthermore, 4-PBA treatment inhibited silica-induced endoplasmic reticulum expansion and the expression of BiP and CHOP. Moreover, 4-PBA treatment attenuated nuclear condensation, reduced apoptotic cells, and downregulated caspase-3 expression in silica-stimulated cells.
CONCLUSIONSilica-induced ERS is involved in the apoptosis of alveolar macrophages.
Animals ; Apoptosis ; drug effects ; Butylamines ; Cell Survival ; drug effects ; Endoplasmic Reticulum Stress ; physiology ; Mice ; RAW 264.7 Cells ; Silicon Dioxide ; toxicity
8.Effects of Selenium on Fusarium Growth and Associated Fermentation Products and the Relationship with Chondrocyte Viability.
Hong YIN ; Yan ZHANG ; Feng ZHANG ; Jin Tao HU ; Yu Meng ZHAO ; Bo Lun CHENG
Biomedical and Environmental Sciences 2017;30(2):134-138
This study determined the effects of selenium on the growth of Fusarium strains and the effects of products extracted from the fungal cultures on relevant indicators of chondrocytes injury. The results showed that selenium supplementation resulted in differential effects on the mycelial growth of the strains. Levels of the chondrocyte injury indicators, including cell viability, proteoglycan and type II collagen contents and their mRNA expressions, were all reduced to varying degrees when the chondrocytes were incubated with fermentation extracts, the inhibitory effect varied depending on selenium content supplemented to fungal culture media. The results indicated that certain chain relations existed between the content of selenium in the environment, the production of some metabolites by fungi, and the occurrence of chondrocyte damage. The extent of this relationship and the role it plays in Kaschin-Beck disease pathogenesis merit further study.
Animals
;
Cell Survival
;
Cells, Cultured
;
Chondrocytes
;
pathology
;
Fermentation
;
Fusarium
;
drug effects
;
physiology
;
Rabbits
;
Selenium
;
pharmacology
9.Effect of telomerase activation on biological behaviors of neural stem cells in rats with hypoxic-ischemic insults.
Jun-Jie MENG ; Shi-Ping LI ; Feng-Yan ZHAO ; Yu TONG ; De-Zhi MU ; Yi QU
Chinese Journal of Contemporary Pediatrics 2017;19(2):229-236
OBJECTIVETo investigate the effect of telomerase activation on biological behaviors of neural stem cells after hypoxic-ischemic insults.
METHODSThe neural stem cells passaged in vitro were divided into four groups: control, oxygen-glucose deprivation (OGD), OGD+cycloastragenol (CAG) high concentration (final concentration of 25 μM), and OGD+CAG low concentration (final concentration of 10 μM). The latter three groups were subjected to OGD. Telomerase reverse transcriptase (TERT) expression level was evaluated by Western blot. Telomerase activity was detected by telomerase repeat amplification protocol (TRAP). Cell number and neural sphere diameter were measured under a microscope. The activity of lactate dehydrogenase (LDH) was examined by chemiluminescence. Cell proliferation rate and apoptosis were detected by flow cytometry.
RESULTSAfter OGD insults, obvious injury of neural stem cells was observed, including less cell number, smaller neural sphere, more dead cells, lower proliferation rate and decreased survival rate. In CAG-treated groups, there were higher TERT expression level and telomerase activity compared with the control group (P<0.05). In comparison with the OGD group, CAG treatment attenuated cell loss (P<0.05) and neural sphere diameter decrease (P<0.05), promoted cell proliferation (P<0.05), and increased cell survival rate (P<0.05). Low and high concentrations of CAG had similar effects on proliferation and survival of neural stem cells (P>0.05). In the normal cultural condition, CAG treatment also enhanced TERT expression (P<0.05) and increased cell numbers (P<0.05) and neural sphere diameter (P<0.05) compared with the control group.
CONCLUSIONSTelomerase activation can promote the proliferation and improve survival of neural stem cells under the state of hypoxic-ischemic insults, suggesting telomerase activators might be potential agents for the therapy of hypoxic-ischemic brain injury.
Animals ; Cell Survival ; drug effects ; Enzyme Activation ; Hypoxia-Ischemia, Brain ; etiology ; Neural Stem Cells ; drug effects ; physiology ; Rats ; Sapogenins ; pharmacology ; Telomerase ; physiology
10.Effects of Low-dose Triamcinolone Acetonide on Rat Retinal Progenitor Cells under Hypoxia Condition.
Yao XING ; Li-Jun CUI ; Qian-Yan KANG
Chinese Medical Journal 2016;129(13):1600-1606
BACKGROUNDRetinal degenerative diseases are the leading causes of blindness in developed world. Retinal progenitor cells (RPCs) play a key role in retina restoration. Triamcinolone acetonide (TA) is widely used for the treatment of retinal degenerative diseases. In this study, we investigated the role of TA on RPCs in hypoxia condition.
METHODSRPCs were primary cultured and identified by immunofluorescence staining. Cells were cultured under normoxia, hypoxia 6 h, and hypoxia 6 h with TA treatment conditions. For the TA treatment groups, after being cultured under hypoxia condition for 6 h, RPCs were treated with different concentrations of TA for 48-72 h. Cell viability was measured by cell counting kit-8 (CCK-8) assay. Cell cycle was detected by flow cytometry. Western blotting was employed to examine the expression of cyclin D1, Akt, p-Akt, nuclear factor (NF)-κB p65, and caspase-3.
RESULTSCCK-8 assays indicated that the viability of RPCs treated with 0.01 mg/ml TA in hypoxia group was improved after 48 h, comparing with control group (P < 0.05). After 72 h, the cell viability was enhanced in both 0.01 mg/ml and 0.02 mg/ml TA groups compared with control group (all P < 0.05). Flow cytometry revealed that there were more cells in S-phase in hypoxia 6 h group than in normoxia control group (P < 0.05). RPCs in S and G2/M phases decreased in groups given TA, comparing with other groups (all P < 0.05). There was no significant difference in the total Akt protein expression among different groups, whereas upregulation of p-Akt and NF-κB p65 protein expression and downregulation of caspase-3 and cyclin D1 protein expression were observed in 0.01 mg/ml TA group, comparing with hypoxia 6 h group and control group (all P < 0.05).
CONCLUSIONLow-dose TA has anti-apoptosis effect on RPCs while it has no stimulatory effect on cell proliferation.
Animals ; Apoptosis ; drug effects ; physiology ; Caspase 3 ; metabolism ; Cell Cycle ; drug effects ; physiology ; Cell Hypoxia ; drug effects ; physiology ; Cell Proliferation ; drug effects ; physiology ; Cell Survival ; drug effects ; physiology ; Cells, Cultured ; Cyclin D1 ; metabolism ; NF-kappa B ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Retina ; cytology ; Stem Cells ; cytology ; drug effects ; Triamcinolone Acetonide ; pharmacology

Result Analysis
Print
Save
E-mail