1.Regulation of microRNA-126 on the polarization of human macrophages stimulated by Porphyromonas gingivalis lipopolysaccharide.
Jia Jun LI ; Yue LIU ; Li Ting SONG ; Chang Yi LI ; Shao Yun JIANG
Chinese Journal of Stomatology 2022;57(4):390-396
Objective: To study the effect of microRNA-126 (miR-126) on the polarization of human monocyte-derived macrophages stimulated by Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS). Methods: Macrophages derived from human myeloid leukemia mononuclear cells were stimulated by Pg-LPS (5 mg/L) and by Pg-LPS (5 mg/L) after 24 h-transfection of miR-126 mimic or negative control RNA for 48 h, respectively. Real-time quantitative-PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting were conducted to detect the changes in miR-126, pro-inflammatory factor tumor necrosis factor-α (TNF-α), anti-inflammatory factors interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1) and M1 polarization-related pathways such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Results: Compared with non-LPS stimulation group (TNF-α: 1.000±0.020, iNOS: 1.125±0.064, miR-126: 1.004±0.113, IL-10: 1.003±0.053, Arg-1: 1.130±0.061), the mRNA levels of TNF-α (3.105±0.278) and iNOS (4.296±0.003) increased significantly (t=6.53, P=0.003; t=42.63, P<0.001, respectively), while miR-126, IL-10 and Arg-1 expressions (0.451±0.038, 0.545±0.004 and 0.253±0.017) decreased significantly (t=7.95, P=0.001; t=7.36, P=0.002; t=11.94, P<0.001, respectively) after Pg-LPS stimulated by human-derived macrophages for 48 h. The protein expression of iNOS, TNF-α, Arg-1 and IL-10 were consistent at mRNA levels. Meanwhile, the expressions of phospho-NF-κB p65 (p-p65), phospho-extracellular signal-regulated kinase (p-ERK) and phospho-p38 MAPK (p-p38) increased significantly, while the expression of Arg-1 decreased significantly. Compared with the negative controls (scramble RNA) (TNF-α: 1.141±0.197, iNOS: 1.173±0.115, IL-10: 1.032±0.138, Arg-1: 0.933±0.044), the mRNA levels of TNF-α (0.342±0.022) and iNOS (0.588±0.085) expressions significantly decreased (t=5.35, P=0.006; t=5.05, P=0.007), while IL-10 (1.786±0.221) and Arg-1 expressions (2.152±0.229) significantly increased (t=3.71, P=0.021; t=6.21, P=0.003) after Pg-LPS stimulation with miR-126 mimic transfection. The relative protein expressions of iNOS, p-p65, p-ERK and p-p38 significantly decreased (t=13.00, P<0.001; t=6.98, P=0.002; t=10.86, P<0.001; t=8.32, P=0.001), while the protein level of Arg-1 significantly increased (t=12.08, P<0.001). Conclusions: Pg-LPS could promote M1 polarization of macrophages. miR-126 might inhibit the effect of Pg-LPS on the M1 polarization of macrophages through down-regulating NF-κB and MAPK signaling pathways.
Cell Polarity
;
Humans
;
Interleukin-10/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophage Activation
;
Macrophages/drug effects*
;
MicroRNAs/metabolism*
;
NF-kappa B/metabolism*
;
Porphyromonas gingivalis
;
RNA, Messenger/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
3.Astragaloside Ⅳ inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization.
Xintian ZHENG ; Haiyan GAN ; Lin LI ; Xiaowei HU ; Yan FANG ; Lisheng CHU
Journal of Zhejiang University. Medical sciences 2020;49(6):679-686
OBJECTIVE:
To investigate the effects of astragaloside Ⅳ (AS-Ⅳ) on microglia/macrophage M1/M2 polarization and inflammatory response after cerebral ischemia in rats.
METHODS:
Forty eight male SD rats were randomly divided into sham operation control group, model control group and AS-Ⅳ group with 16 rats in each. Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery (MCAO) using the intraluminal filament. After ischemia induced, the rats in AS-Ⅳ group were intraperitoneally injected with 40 mg/kg AS-Ⅳ once a day for 3 days. The neurological functions were evaluated by the modified neurological severity score (mNSS) and the corner test on d1 and d3 after modelling. The infarct volume was measured by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining on d3 after ischemia. The expression of M1 microglia/macrophage markers CD86, inducible nitric oxide synthase (iNOS) and pro-inflammatory factors TNF-α, IL-1β, IL-6, M2 microglia/macrophages markers CD206, arginase-1 (Arg-1), chitinase-like protein (YM1/2) and anti-inflammatory factors interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) was detected by real-time RT-PCR. The expression of CD16/32/Iba1 and CD206/Iba1 was determined by double labeling immunefluorescence method in the peripheral area of cerebral ischemia.
RESULTS:
Compared with model control group, AS-Ⅳ treatment improved neurological function recovery and reduced infarct volume after ischemia (
CONCLUSIONS
The findings suggest that AS-Ⅳ ameliorates brain injury after cerebral ischemia in rats, which may be related to inhibiting inflammation through promoting the polarization of the microglia/macrophage from M1 to M2 phenotype in the ischemic brain.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Brain Ischemia/drug therapy*
;
Cell Polarity/drug effects*
;
Inflammation/drug therapy*
;
Macrophages/drug effects*
;
Male
;
Microglia/drug effects*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
4.MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages.
Chong CHEN ; Jia-Ming LIU ; Yun-Ping LUO
Journal of Zhejiang University. Science. B 2020;21(1):12-28
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are critical for cancer initiation and progression. MicroRNAs (miRNAs) could notably influence the phenotype of TAMs through various targets and signal pathways during cancer progression due to their post-transcriptional regulation. In this review, we discuss mainly the regulatory function of miRNAs on macrophage differentiation, functional polarization, and cellular crosstalk. Firstly, during the generation process, miRNAs take part in the differentiation from myeloid cells to mature macrophages, and this maturation process directly influences their recruitment into the TME, attracted by tumor cells. Secondly, macrophages in the TME can be either tumor-promoting or tumor-suppressing, depending on their functional polarization. Large numbers of miRNAs can influence the polarization of macrophages, which is crucial for tumor progression, including tumor cell invasion, intravasation, extravasation, and premetastatic site formation. Thirdly, crosstalk between tumor cells and macrophages is essential for TME formation and tumor progression, and miRNAs can be the mediator of communication in different forms, especially when encapsulated in microvesicles or exosomes. We also assess the potential value of certain macrophage-related miRNAs (MRMs) as diagnostic and prognostic markers, and discuss the possible development of MRM-based therapies.
Cell Communication
;
Cell Differentiation
;
Cell Polarity
;
Humans
;
Macrophages/physiology*
;
MicroRNAs/physiology*
;
Myeloid Cells/cytology*
;
Neoplasms/therapy*
;
Tumor Microenvironment
5.Lung macrophages are involved in lung injury secondary to repetitive diving.
Ke NING ; Zhen-Biao GUAN ; Hong-Tao LU ; Ning ZHANG ; Xue-Jun SUN ; Wen-Wu LIU
Journal of Zhejiang University. Science. B 2020;21(8):646-656
This study aimed to establish an animal model of decompression-induced lung injury (DILI) secondary to repetitive diving in mice and explore the role of macrophages in DILI and the protective effects of high-concentration hydrogen (HCH) on DILI. Mice were divided into three groups: control group, DILI group, and HCH group. Mice were exposed to hyperbaric air at 600 kPa for 60 min once daily for consecutive 3 d and then experienced decompression. In HCH group, mice were administered with HCH (66.7% hydrogen and 33.3% oxygen) for 60 min after each hyperbaric exposure. Pulmonary function tests were done 6 h after decompression; the blood was harvested for cell counting; the lung tissues were harvested for the detection of inflammatory cytokines, hematoxylin and eosin (HE) staining, and immunohistochemistry; western blotting and polymerase chain reaction (PCR) were done for the detection of markers for M1 and M2 macrophages. Our results showed that bubbles formed after decompression and repeated hyperbaric exposures significantly reduced the total lung volume and functional residual volume. Moreover, repetitive diving dramatically increased proinflammatory factors and increased the markers of both M1 and M2 macrophages. HCH inhalation improved lung function to a certain extent, and significantly reduced the pro-inflammatory factors. These effects were related to the reduction of M1 macrophages as well as the increase in M2 macrophages. This study indicates that repetitive diving damages lung function and activates lung macrophages, resulting in lung inflammation. HCH inhalation after each diving may be a promising strategy for the prevention of DILI.
Animals
;
Cell Polarity
;
Diving/adverse effects*
;
Lung/physiology*
;
Lung Injury/etiology*
;
Macrophages/physiology*
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Pulmonary Edema/etiology*
6.Research Trends of Macrophage Polarization: A Bibliometric Analysis.
Han GAO ; Feng-Yan HUANG ; Zhi-Ping WANG
Chinese Medical Journal 2018;131(24):2968-2975
Background:
Macrophage polarization is involved in the development of many diseases such as obesity, diabetes, and cancer. This study aimed to understand the trends and hotspots of macrophage polarization research.
Methods:
We searched through the Web of Science Core Collection database to obtain original articles in this research domain. CiteSpace, HistCite, and VOSviewer software were used to facilitate the analysis and visualization of scientific productivity and emerging trends.
Results:
The survey included 3064 articles, and the annual number of publications exhibited an exponential increase. These articles have received a total of 74,801 citations, and the number of annual citations grew from 68 to 18,074 in a decade. Research on macrophage polarization was performed in 76 countries, and the USA ranked first in terms of research output by contributing 1129 (36.8%) articles. The USA also had the highest H-index, total citations, and highly cited article number. PLOS One, Journal of Immunology, and Scientific Reports were the three journals that published the most articles. Interdisciplinary research areas involving macrophage polarization, such as biomaterials, cancer, and diabetes, were identified by journal citation analysis. The top 20 most productive institutions were located mainly in the USA, France, and China, and top authors originated mainly from the USA and Italy. Tumor biology, obesity, and infection were research hotspots and may be promising in the next few years.
Conclusions
This study provides a comprehensive analysis that delineates the scientific productivity, collaboration, and research hotspots of macrophage polarization research.
Bibliometrics
;
Biomedical Research
;
Cell Polarity
;
physiology
;
Efficiency
;
Humans
;
Macrophages
;
physiology
7.Influence of dexamethasone on the cell polarity and PAR complex of the embryonic epithelial cells in the palate.
Ma LI ; Shi BING ; Zheng QIAN
West China Journal of Stomatology 2018;36(1):9-16
OBJECTIVE:
This study aims to investigate whether dexamethasone (DEX) can down-regulate the PAR complex and disrupt the cell polarity in the palatal epithelium during palatal fusion.
METHODS:
Pregnant rats were randomly divided into control and DEX groups, which were injected intraperitoneally with 0.9% sodium chloride (0.1 mL) and DEX (6 mg·kg ⁻¹), respectively, every day from E10 to E12. The palatal epithelial morphology was observed using hematoxylin and eosin staining and scanning electron microscopy. Immunofluorescence staining, Western Blot analysis, and real-time polymerase chain reaction were performed to detect the expression of PAR3, PAR6, and aPKC.
RESULTS:
The incidence of cleft palate in DEX group (46.15%) was significantly higher than that in control group (3.92%), and the difference was statistically significant (χ2=24.335, P=0.00). DEX can also retard the growth of the palatal shelves and the short palatal shelves. The morphology and arrangement of MEE cells changed from polarized bilayer cells to nonpolarized monolayer ones. Additionally, the spherical structure decreased, which caused the cleft palate. PAR3 and PAR6 were only detected in the palatal epithelium, and aPKC was expressed in the palatal epithelium and mesenchyme. DEX can reduce the expression levels of PAR3, PAR6, and aPKC in the protein and gene levels.
CONCLUSIONS
DEX can down-regulate the complex gene expression in the MEE cells, thereby destroying the cell polarity and causing cleft palate.
Animals
;
Carrier Proteins
;
physiology
;
Cell Polarity
;
drug effects
;
Cleft Palate
;
etiology
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
Female
;
Glucocorticoids
;
pharmacology
;
Palate
;
Pregnancy
;
Rats
8.Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice.
Hong-Yu DUAN ; Kai-Yu ZHOU ; Tao WANG ; Yi ZHANG ; Yi-Fei LI ; Yi-Min HUA ; Chuan WANG
Chinese Medical Journal 2018;131(17):2080-2088
Background:
Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway.
Methods:
VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay.
Results:
VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05).
Conclusion
VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Animals
;
Cell Polarity
;
Enzyme Inhibitors
;
adverse effects
;
Female
;
Fetal Heart
;
embryology
;
Heart Defects, Congenital
;
chemically induced
;
physiopathology
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases
;
drug effects
;
physiology
;
Mice
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins
;
Pregnancy
;
Rats
;
Transfection
;
Valproic Acid
;
adverse effects
9.IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis.
Yuzhu HOU ; Linnan ZHU ; Hongling TIAN ; Hai-Xi SUN ; Ruoyu WANG ; Lianfeng ZHANG ; Yong ZHAO
Protein & Cell 2018;9(12):1027-1038
Macrophages acquire distinct phenotypes during tissue stress and inflammatory responses. Macrophages are roughly categorized into two different subsets named inflammatory M1 and anti-inflammatory M2 macrophages. We herein identified a unique pathogenic macrophage subpopulation driven by IL-23 with a distinct gene expression profile including defined types of cytokines. The freshly isolated resting mouse peritoneal macrophages were stimulated with different cytokines in vitro, the expression of cytokines and chemokines were detected by microarray, real-time PCR, ELISA and multiple colors flow cytometry. Adoptive transfer of macrophages and imiquimod-induced psoriasis mice were used. In contrast to M1- and M2-polarized macrophages, IL-23-treated macrophages produce large amounts of IL-17A, IL-22 and IFN-γ. Biochemical and molecular studies showed that IL-23 induces IL-17A expression in macrophages through the signal transducer and activator of transcription 3 (STAT3)-retinoid related orphan receptor-γ T (RORγT) pathway. T-bet mediates the IFN-γ production in IL-23-treated macrophages. Importantly, IL-23-treated macrophages significantly promote the dermatitis pathogenesis in a psoriasis-like mouse model. IL-23-treated resting macrophages express a distinctive gene expression prolife compared with M1 and M2 macrophages. The identification of IL-23-induced macrophage polarization may help us to understand the contribution of macrophage subpopulation in Th17-cytokines-related pathogenesis.
Animals
;
Cell Polarity
;
Imiquimod
;
Interleukin-23
;
metabolism
;
Macrophages
;
metabolism
;
pathology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Psoriasis
;
chemically induced
;
metabolism
;
pathology
10.Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats.
Meng-Xian PAN ; Jun-Chun TANG ; Rui LIU ; Yu-Gong FENG ; Qi WAN
Chinese Journal of Traumatology 2018;21(4):224-228
PURPOSETo investigate the effects of estrogen G protein-coupled receptor 30 (GPR30) agonist G1 on hippocampal neuronal apoptosis and microglial polarization in rat traumatic brain injury (TBI).
METHODSMale SD rats were randomly divided into sham group, TBI + vehicle group, TBI + G1 group. Experimental moderate TBI was induced using Feeney's weigh-drop method. G1 (100μg/kg) or vehicle was intravenously injected from femoral vein at 30 min post-injury. Rats were sacrificed at 24 h after injury for detection of neuronal apoptosis and microglia polarization. Neuronal apoptosis was assayed by immunofluorescent staining of active caspase-3. M1 type microglia markers (iNOS and IL-1β) and M2 type markers (Arg1 and IL-4) were examined by immunoblotting or ELISA. Total protein level of Akt and phosphorylated Akt were assayed by immunoblotting.
RESULTSG1 significantly reduced active caspase-3 positive neurons in hippocampus. Meanwhile G1 increased the ratio of Arg1/iNOS. IL-1β production was decreased but IL-4 was increased after G1 treatment. G1 treatment also increased the active form of Akt.
CONCLUSIONSGPR30 agonist G1 inhibited neuronal apoptosis and favored microglia polarization to M2 type.
Animals ; Apoptosis ; drug effects ; Brain Injuries, Traumatic ; drug therapy ; pathology ; Cell Polarity ; Hippocampus ; drug effects ; Interleukin-1beta ; biosynthesis ; Male ; Microglia ; drug effects ; Neurons ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; agonists

Result Analysis
Print
Save
E-mail