1.Progress in the Study of Spindle Assembly Checkpoint in Lung Cancer.
Xinchen QIN ; Yao ZHANG ; Haijie YU ; Lijuan MA
Chinese Journal of Lung Cancer 2023;26(4):310-318
Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.
Humans
;
Cell Cycle Proteins/metabolism*
;
Spindle Apparatus/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
M Phase Cell Cycle Checkpoints/genetics*
;
Lung Neoplasms/metabolism*
2.CUDC-101 as a dual-target inhibitor of EGFR and HDAC enhances the anti-myeloma effects of bortezomib by regulating G2/M cell cycle arrest.
Wen CAO ; Shunnan YAO ; Anqi LI ; Haoguang CHEN ; Enfan ZHANG ; Liqin CAO ; Jinna ZHANG ; Yifan HOU ; Zhenfeng DAI ; Jing CHEN ; Xi HUANG ; Li YANG ; Zhen CAI
Journal of Zhejiang University. Science. B 2023;24(5):442-454
CUDC-101, an effective and multi-target inhibitor of epidermal growth factor receptor (EGFR), histone deacetylase (HDAC), and human epidermal growth factor receptor 2 (HER2), has been reported to inhibit many kinds of cancers, such as acute promyelocytic leukemia and non-Hodgkin's lymphoma. However, no studies have yet investigated whether CUDC-101 is effective against myeloma. Herein, we proved that CUDC-101 effectively inhibits the proliferation of multiple myeloma (MM) cell lines and induces cell apoptosis in a time- and dose-dependent manner. Moreover, CUDC-101 markedly blocked the signaling pathway of EGFR/phosphoinositide-3-kinase (PI3K) and HDAC, and regulated the cell cycle G2/M arrest. Moreover, we revealed through in vivo experiment that CUDC-101 is a potent anti-myeloma drug. Bortezomib is one of the important drugs in MM treatment, and we investigated whether CUDC-101 has a synergistic or additive effect with bortezomib. The results showed that this drug combination had a synergistic anti-myeloma effect by inducing G2/M phase blockade. Collectively, our findings revealed that CUDC-101 could act on its own or in conjunction with bortezomib, which provides insights into exploring new strategies for MM treatment.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
Bortezomib/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
ErbB Receptors/antagonists & inhibitors*
;
G2 Phase Cell Cycle Checkpoints
;
Histone Deacetylase Inhibitors/pharmacology*
;
Histone Deacetylases/metabolism*
;
M Cells
;
Multiple Myeloma/drug therapy*
3.RBM46 is essential for gametogenesis and functions in post-transcriptional roles affecting meiotic cohesin subunits.
Yue LV ; Gang LU ; Yuling CAI ; Ruibao SU ; Liang LIANG ; Xin WANG ; Wenyu MU ; Xiuqing HE ; Tao HUANG ; Jinlong MA ; Yueran ZHAO ; Zi-Jiang CHEN ; Yuanchao XUE ; Hongbin LIU ; Wai-Yee CHAN
Protein & Cell 2023;14(1):51-63
RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes. We found that RBM46 preferentially binds target mRNAs containing GCCUAU/GUUCGA motifs in their 3'UTRs regions. In <i>Rbm46i> knockout mice, the RBM46-target cohesin subunits displayed unaltered mRNA levels but had reduced translation, resulting in the failed assembly of axial elements, synapsis disruption, and meiotic arrest. Our study thus provides mechanistic insights into the molecular functions of RBM46 in gametogenesis and illustrates the power of LACE-seq for investigations of RNA-binding protein functions when working with low-abundance input materials.
Animals
;
Mice
;
3' Untranslated Regions/genetics*
;
Cell Cycle Proteins/metabolism*
;
Gametogenesis/genetics*
;
Meiosis/genetics*
;
Nuclear Proteins/genetics*
;
RNA-Binding Proteins/genetics*
4.Aurora A Kinase Plays a Key Role in Mitosis Skip during Senescence Induced by Ionizing Radiation.
Xu Rui ZHANG ; Tong Shan ZHANG ; Ya Nan ZHANG ; Jun Rui HUA ; Ju Fang WANG ; Jin Peng HE
Biomedical and Environmental Sciences 2023;36(10):903-916
OBJECTIVE:
To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation (IR).
METHODS:
Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237 (MLN) and/or p21 depletion by small interfering RNA (siRNA). Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator (FUCCI) system combined with histone H3 phosphorylation at Ser10 (pS10 H3) detection. Senescence was assessed using senescence-associated-β-galactosidase (SA-β-Gal), Ki67, and γH2AX staining. Protein expression levels were determined using western blotting.
RESULTS:
Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment. The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells, ultimately leading to senescence in G1. During this process, the p53/p21 pathway is hyperactivated. Accompanying p21 accumulation, Aurora A kinase levels declined sharply. MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.
CONCLUSION
Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation, leading to senescence <i>viai> mitotic skipping.
Humans
;
Aurora Kinase A/metabolism*
;
Cell Line, Tumor
;
Mitosis
;
Cell Cycle
;
Radiation, Ionizing
;
RNA, Small Interfering/metabolism*
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism*
5.Loss of RBFOX2 inhibits meiotic initiation in male mice.
Lin YAN ; Jian CHEN ; Yan NING ; Chunsheng HAN
Chinese Journal of Biotechnology 2023;39(10):4108-4122
Meiotic initiation is a critical step in gametogenesis. Recently, some genes required for meiotic initiation have been identified. However, meiosis-initiating factors and the underlying mechanisms are far from being fully understood. We have established a long-term culture system of spermatogonial stem cells (SSCs) and an <i>in vitroi> model of meiotic initiation using mouse SSCs. Our previous study revealed that the RNA-binding protein RBFOX2 may regulate meiotic initiation, but the role and the mechanism need to be further elucidated. In this study, we constructed RBFOX2 knockdown SSC lines by using lentivirus-mediated gene delivery method, and found that the knockdown SSCs underwent normal self-renewal, mitosis and differentiation. However, they were unable to initiate meiosis when treated with retinoic acid, and they underwent apoptosis. These results indicate that RBFOX2 plays an essential role in meiotic initiation of spermatogonia. This work provides new clues for understanding the functions of RNA-binding proteins in meiotic initiation.
Mice
;
Male
;
Animals
;
Spermatogonia/metabolism*
;
Meiosis/genetics*
;
Cell Differentiation
;
Tretinoin/pharmacology*
;
Mitosis
;
Testis/metabolism*
6.Fine-tuning cell organelle dynamics during mitosis by small GTPases.
Zijian ZHANG ; Wei ZHANG ; Quentin LIU
Frontiers of Medicine 2022;16(3):339-357
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Humans
;
Mitosis
;
Monomeric GTP-Binding Proteins
;
Neoplasms
;
Organelles/physiology*
;
Signal Transduction
7.Molecular Mechanism of Aurora Kinase A Regulating the Meiosis of Oocyte.
Feng LIU ; Bo YAO ; Xiao-Long MO ; Qiong-You LIU ; Yan-Ping REN
Acta Academiae Medicinae Sinicae 2022;44(1):142-148
Aurora kinase A (AURKA),a family member of aurora kinases,is involved in mitotic entry,maturation and separation of centrosome,assembly and stabilization of bipolar spindle,and condensation and separation of chromosome.Studies have demonstrated that AURKA plays a similar role in meiosis,while the specific mechanism and the similarities and differences in its role between meiosis and mitosis remain unclear.Therefore,we reviewed the studies about the localization and activation of AURKA in oocyte meiosis,and compared the role of AURKA in regulating spindle formation,activating spindle assembly checkpoint,and correcting the kinetochore-microtubule attachment between the meiosis of oocytes and the mitosis of somatic cells.This review will lay a theoretical foundation for revealing the mechanism of AURKA in the regulation of cell division and for the clinical research related to cancer and reproduction.
Aurora Kinase A/genetics*
;
Cell Cycle Proteins/genetics*
;
Chromosome Segregation
;
Humans
;
Meiosis
;
Oocytes
8.Maternal heterozygous mutation in CHEK1 leads to mitotic arrest in human zygotes.
Beili CHEN ; Jianying GUO ; Ting WANG ; Qianhui LEE ; Jia MING ; Fangfang DING ; Haitao LI ; Zhiguo ZHANG ; Lin LI ; Yunxia CAO ; Jie NA
Protein & Cell 2022;13(2):148-154
9.Research progress of cyclic adenosine monophosphate in mammalian follicular development.
Acta Physiologica Sinica 2021;73(3):518-526
Cyclic adenosine monophosphate (cAMP) is one of the significant and conserved second messengers in mammals, and it participates in regulating the developmental and physiological functions of various organs and tissues through transducting extracellular signals. Studies have shown that the process of meiosis in female mammalian oocytes is closely related to the level of cAMP and strictly regulated. In oocytes, cAMP is mainly synthesized by adenylate cyclase 3 (AC3) and degraded by phosphodiesterase 3A (PDE3A), both of which jointly regulate the level of cAMP in oocytes and play important roles in the follicular development and oogenesis of female ovaries. It has been well illuminated that high level of cAMP in the cytoplasm of oocytes in growing follicles could maintain the arrest of the first meiotic of oocytes for a long time. The oocytes will resume meiosis and mature either when the synthesis of cAMP is down-regulated, or when cAMP is degraded by PDE3A. In recent years, the novo physiological functions of cAMP in oogenesis have been reported. To better understand the regulatory role and mechanism of cAMP in mammalian gametogenesis, this paper reviews the relevant research regarding the relationship between cAMP and germ cell development.
Adenosine Monophosphate
;
Animals
;
Cyclic AMP
;
Female
;
Mammals
;
Meiosis
;
Oocytes
;
Oogenesis
10.Effect and Mechanism of Sulforaphane on G
Fan-Ping WANG ; Cai-Juan QIAO ; Yan-Wei SUN ; Xiang-Yang LI ; Xiao-Yu HUANG ; Wen-Rui ZHANG ; Xia WANG ; Ming-Yong WANG
Journal of Experimental Hematology 2021;29(4):1050-1055
OBJECTIVE:
To investigate the effect of sulforaphane (SFN) on G
METHODS:
KG1a and KG1cells were treated by different concentrations of SFN for 48 h. Flow cytometry (FCM) was used to analyze the phase distribution of cell cycle. High-throughput sequencing was used to detect the effect of SFN on the expression of cell cycle related genes in KG1a cells. The mRNA expression of P53, P21, CDC2 and CyclinB1 were detected by qPCR. The protein expression of P53, CDC2, P-CDC2 and CyclinB1 were detected by Western blot.
RESULTS:
Cells in the G
CONCLUSION
SFN induces leukemia cells to block in G
Cell Cycle
;
Humans
;
Isothiocyanates/pharmacology*
;
Leukemia, Myeloid, Acute
;
Mitosis
;
Sulfoxides

Result Analysis
Print
Save
E-mail