1.NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated with Porphyromonas gingivalis lipopolysaccharide.
Xufei YU ; Jiaqi BAO ; Yingming WEI ; Yuting YANG ; Wenlin YUAN ; Lili CHEN ; Zhongxiu WANG
Journal of Zhejiang University. Science. B 2025;26(9):881-896
BACKGROUND: Periodontitis is characterized by alveolar bone resorption, aggravated by osteoblast dysfunction, and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2 (NRF2) level. We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation. METHODS: Primary murine mandibular osteoblasts were extracted and exposed to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) or other stimuli. Reactive oxygen species (ROS) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining were used to detect intracellular oxidative stress. Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts. Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase (MAPK) pathway and related molecule activities. Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1 (DUSP1) in cells. RESULTS: Ligated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples. Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation, whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate. NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression, thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts. The interaction between NRF2 and DUSP1 was observed. CONCLUSIONS: NRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts under Pg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway. These findings form the basis of periodontitis treatment.
Animals
;
NF-E2-Related Factor 2/physiology*
;
Lipopolysaccharides/pharmacology*
;
Osteoblasts/drug effects*
;
Mice
;
Porphyromonas gingivalis/chemistry*
;
Cell Differentiation
;
Osteogenesis
;
Dual Specificity Phosphatase 1/metabolism*
;
Mandible/cytology*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress
;
Periodontitis/metabolism*
;
Cells, Cultured
;
Male
;
Cell Nucleus/metabolism*
2.Extract of Fructus Schisandrae chinensis Inhibits Neuroinflammation Mediator Production from Microglia via NF-κ B and MAPK Pathways.
Fang-Jiao SONG ; Ke-Wu ZENG ; Jin-Feng CHEN ; Yuan LI ; Xiao-Min SONG ; Peng-Fei TU ; Xue-Mei WANG
Chinese journal of integrative medicine 2019;25(2):131-138
OBJECTIVE:
To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.
METHODS:
Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.
RESULTS:
EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).
CONCLUSION
EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.
Animals
;
Astrocytes
;
drug effects
;
metabolism
;
pathology
;
Cell Line
;
Cell Nucleus
;
drug effects
;
metabolism
;
Chromatography, High Pressure Liquid
;
Down-Regulation
;
drug effects
;
Inflammation
;
pathology
;
Inflammation Mediators
;
metabolism
;
Lipopolysaccharides
;
MAP Kinase Signaling System
;
drug effects
;
Mice, Inbred ICR
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NF-kappa B
;
metabolism
;
Nervous System
;
pathology
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Schisandra
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization
3.Identification of natural compounds targeting Annexin A2 with an anti-cancer effect.
Yu-Shi WANG ; He LI ; Yang LI ; Hongyan ZHU ; Ying-Hua JIN
Protein & Cell 2018;9(6):568-579
Annexin A2, a multifunctional tumor associated protein, promotes nuclear factor-kappa B (NF-κB) activation by interacting with NF-κB p50 subunit and facilitating its nuclear translocation. Here we demonstrated that two ginsenosides Rg5 (G-Rg5) and Rk1 (G-Rk1), with similar structure, directly bound to Annexin A2 by molecular docking and cellular thermal shift assay. Both Rg5 and Rk1 inhibited the interaction between Annexin A2 and NF-κB p50 subunit, their translocation to nuclear and NF-κB activation. Inhibition of NF-κB by these two ginsenosides decreased the expression of inhibitor of apoptosis proteins (IAPs), leading to caspase activation and apoptosis. Over expression of K302A Annexin A2, a mutant version of Annexin A2, which fails to interact with G-Rg5 and G-Rk1, effectively reduced the NF-κB inhibitory effect and apoptosis induced by G-Rg5 and G-Rk1. In addition, the knockdown of Annexin A2 largely enhanced NF-κB activation and apoptosis induced by the two molecules, indicating that the effects of G-Rg5 and G-Rk1 on NF-κB were mainly mediated by Annexin A2. Taken together, this study for the first time demonstrated that G-Rg5 and G-Rk1 inhibit tumor cell growth by targeting Annexin A2 and NF-κB pathway, and G-Rg5 and G-Rk1 might be promising natural compounds for targeted cancer therapy.
Active Transport, Cell Nucleus
;
drug effects
;
Annexin A2
;
chemistry
;
deficiency
;
genetics
;
metabolism
;
Antineoplastic Agents
;
chemistry
;
metabolism
;
pharmacology
;
Apoptosis
;
drug effects
;
Biological Products
;
chemistry
;
metabolism
;
pharmacology
;
Cell Nucleus
;
drug effects
;
metabolism
;
Down-Regulation
;
drug effects
;
Drug Discovery
;
Gene Knockdown Techniques
;
Ginsenosides
;
chemistry
;
Hep G2 Cells
;
Humans
;
Molecular Docking Simulation
;
Molecular Targeted Therapy
;
NF-kappa B p50 Subunit
;
metabolism
;
Protein Conformation
4.The Role of Exportin-5 in MicroRNA Biogenesis and Cancer.
Ke WU ; Juan HE ; Wenchen PU ; Yong PENG
Genomics, Proteomics & Bioinformatics 2018;16(2):120-126
MicroRNAs (miRNAs) are conserved small non-coding RNAs that play an important role in the regulation of gene expression and participate in a variety of biological processes. The biogenesis of miRNAs is tightly controlled at multiple steps, such as transcription of miRNA genes, processing by Drosha and Dicer, and transportation of precursor miRNAs (pre-miRNAs) from the nucleus to the cytoplasm by exportin-5 (XPO5). Given the critical role of nuclear export of pre-miRNAs in miRNA biogenesis, any alterations of XPO5, resulting from either genetic mutation, epigenetic change, abnormal expression level or posttranslational modification, could affect miRNA expression and thus have profound effects on tumorigenesis. Importantly, XPO5 phosphorylation by ERK kinase and its cis/trans isomerization by the prolyl isomerase Pin1 impair XPO5's nucleo-to-cytoplasmic transport ability of pre-miRNAs, leading to downregulation of mature miRNAs in hepatocellular carcinoma. In this review, we focus on how XPO5 transports pre-miRNAs in the cells and summarize the dysregulation of XPO5 in human tumors.
Carcinoma, Hepatocellular
;
genetics
;
metabolism
;
Cell Nucleus
;
metabolism
;
Cytoplasm
;
metabolism
;
Humans
;
Karyopherins
;
chemistry
;
metabolism
;
physiology
;
Liver Neoplasms
;
genetics
;
metabolism
;
MicroRNAs
;
chemistry
;
metabolism
;
NIMA-Interacting Peptidylprolyl Isomerase
;
Neoplasms
;
genetics
;
metabolism
;
RNA Precursors
;
chemistry
;
metabolism
;
RNA Transport
5.Effect of Total Flavone of Haw Leaves on Nuclear Factor Erythroid-2 Related Factor and Other Related Factors in Nonalcoholic Steatohepatitis Rats.
De-Jun WANG ; Yue-Qin CAI ; Shui-Zhen PAN ; Li-Zong ZHANG ; Yun-Xiang CHEN ; Fang-Ming CHEN ; Ming JIN ; Mao-Xiang YAN ; Xiao-Dong LI ; Zhi-Yun CHEN
Chinese journal of integrative medicine 2018;24(4):265-271
OBJECTIVETo investigate the effect of total flavone of haw leaves (TFHL) on the expression of nuclear factor erythroid-2 related factor (Nrf2) and other related factors in nonalcoholic steatohepatitis (NASH) rats induced by high-fat diet and then to further discuss the mechanism of TFHL's prevention against NASH.
METHODSHigh-fat diet was fed to 40 rats to establish the NASH model. Then model rats were intragastrically administrated with 40, 80, 160 mg/(kg•day) TFHL, respectively. The pathological changes of liver tissues in NASH rats were detected by oil red O and hematoxylin-eosin (HE) stainings. The expression of Nrf2 in rat liver was examined through immunohistochemistry. The level of 8-iso-prostaglandin F2α in serum was detected through enzyme linked immunosorbent assay (ELISA). The mRNA and protein levels of Nrf2 and other related factors in liver tissue were measured by real-time reverse transcriptionpolymerase chain reaction and western blot.
RESULTSLipid deposition, hepatic steatosis, focal necrosis in lobular inflammation and ballooning degeneration were emerged in livers of NASH rats. The 8-iso-prostaglandin F2α in the serum of NASH rats increased significantly compared with the control group (P<0.05). The mRNA of Nrf2, hemeoxyenase1 (HO-1) and the mRNA and protein levels of quinine oxidoreductase (NQO1) in NASH rats liver tissue showed a striking increase, while the mRNA levels of Keap1, r-glutamylcysteine synthethase (rGCS) and glutathione S-transferase (GST) were significantly decreased compared with the control group (P<0.05). After TFHL treatment, 8-iso-prostaglandin F2α level in serum significantly decreased, and Nrf2 mRNA and protein levels in hepatocytes nucleus enhanced compared with the model group (P<0.05 or 0.01). Meanwhile the Keap1 mRNA, the mRNA and protein levels of HO-1, NQO1 antibody, rGCS antibody, GST increased after TFHL treatment (P<0.05 or 0.01).
CONCLUSIONSNrf2 and other related factors were involved in development of NASH, and they also served as an important part in its occurrence. By regulating expression of Nrf2 and other related factors, TFHL may play a role in antioxidative stress and prevention of NASH.
Animals ; Cell Nucleus ; drug effects ; metabolism ; Crataegus ; chemistry ; Dinoprost ; metabolism ; Flavones ; pharmacology ; therapeutic use ; Lipids ; chemistry ; Liver ; drug effects ; metabolism ; pathology ; NF-E2-Related Factor 2 ; genetics ; metabolism ; Non-alcoholic Fatty Liver Disease ; drug therapy ; genetics ; pathology ; Phytotherapy ; Plant Leaves ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
6.Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression.
Wei-Guang YU ; Yong SHEN ; Jian-Zhong WU ; Yan-Bing GAO ; Li-Xing ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):330-338
Fibroblast-like synoviocytes (FLS) play a pivotal role in Rheumatoid arthritis (RA) pathogenesis through aggressive migration and invasion. Madecassoside (Madec), a triterpenoid saponin present in Centella asiatica herbs, has a potent anti-inflammatory effect. In the present study, Madec exerted an obvious therapeutic effect in reversing the histological lesions in adjuvant-induced arthritis (AIA) rats. To recognize the anti-rheumatoid potentials of Madec, we further investigated whether Madec interfered with FLS invasion and metalloproteinase (MMP) expression. In cultures of primary FLS isolated from the AIA rats, Madec (10 and 30 μmol·L) was proven to considerably inhibit migration and invasion of FLS induced by interleukin 1β (IL-1β), but exhibiting no obvious effect on cell proliferation. Madec repressed IL-1β-triggered FLS invasion by prohibiting the expression of MMP-13. Additionally, Madec suppressed MMP-13 transcription via inhibiting the MMP-13 promoter-binding activity of NF-κB. Our results further showed that Madec down-regulated the translocation and phosphorylation of NF-κB as demonstrated by Western blotting and immunofluorescence assays. In conclusion, our results suggest that Madec exerts anti-RA activity via inhibiting the NF-κB/MMP-13 pathway.
Animals
;
Antirheumatic Agents
;
chemistry
;
pharmacology
;
therapeutic use
;
Arthritis, Experimental
;
chemically induced
;
drug therapy
;
pathology
;
Cell Movement
;
drug effects
;
Cell Nucleus
;
metabolism
;
Cells, Cultured
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
Matrix Metalloproteinase 13
;
genetics
;
NF-kappa B
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Protein Transport
;
drug effects
;
Rats
;
Signal Transduction
;
drug effects
;
Synoviocytes
;
drug effects
;
metabolism
;
Transcriptional Activation
;
drug effects
;
Triterpenes
;
chemistry
;
pharmacology
;
therapeutic use
7.Angiotensin II Modulates p130Cas of Podocytes by the Suppression of AMP-Activated Protein Kinase.
Tae Sun HA ; Hye Young PARK ; Su Bin SEONG ; Hee Yul AHN
Journal of Korean Medical Science 2016;31(4):535-541
Angiotensin II (Ang II) induces the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. In kidneys, Ang II plays an important role in the development of proteinuria by the modification of podocyte molecules. We have previously found that Ang II suppressed podocyte AMP-activated protein kinase (AMPK) via Ang II type 1 receptor and MAPK signaling pathway. In the present study, we investigated the roles of AMPK on the changes of p130Cas of podocyte by Ang II. We cultured mouse podocytes and treated them with various concentrations of Ang II and AMPK-modulating agents and analyzed the changes of p130Cas by confocal imaging and western blotting. In immunofluorescence study, Ang II decreased the intensity of p130Cas and changed its localization from peripheral cytoplasm into peri-nuclear areas in a concentrated pattern in podocytes. Ang II also reduced the amount of p130Cas in time and dose-sensitive manners. AMPK activators, metformin and AICAR, restored the suppressed and mal-localized p130Cas significantly, whereas, compound C, an AMPK inhibitor, further aggravated the changes of p130Cas. Losartan, an Ang II type 1 receptor antagonist, recovered the abnormal changes of p130Cas suppressed by Ang II. These results suggest that Ang II induces the relocalization and suppression of podocyte p130Cas by the suppression of AMPK via Ang II type 1 receptor, which would contribute to Ang II-induced podocyte injury.
AMP-Activated Protein Kinases/antagonists & inhibitors/chemistry/*metabolism
;
Aminoimidazole Carboxamide/analogs & derivatives/pharmacology
;
Angiotensin II/*pharmacology
;
Angiotensin II Type 1 Receptor Blockers/pharmacology
;
Animals
;
Blotting, Western
;
Cell Line
;
Cell Nucleus/metabolism
;
Crk-Associated Substrate Protein/*metabolism
;
Cytoplasm/metabolism
;
Focal Adhesion Kinase 1/metabolism
;
Losartan/pharmacology
;
Metformin/pharmacology
;
Mice
;
Microscopy, Confocal
;
Podocytes/cytology/drug effects/metabolism
;
Protein Kinase Inhibitors/*pharmacology
;
Ribonucleotides/pharmacology
;
Signal Transduction/*drug effects
8.Hydroxysafflor yellow A attenuate lipopolysaccharide-induced endothelium inflammatory injury.
Ming JIN ; Chun-Yan SUN ; Bao-Xia ZANG
Chinese journal of integrative medicine 2016;22(1):36-41
OBJECTIVEThis study observed attenuating effect of hydroxysafflor yellow A (HSYA), an effective ingredient of aqueous extract of Carthamus tinctorius L, on lipopolysaccharide (LPS)-induced endothelium inflammatory injury.
METHODSEahy926 human endothelium cell (EC) line was used; thiazolyl blue tetrazolium bromide (MTT) test was assayed to observe the viability of EC; Luciferase reporter gene assay was applied to measure nuclear factor-κB (NF-κB) p65 subunit nuclear binding activity in EC; Western blot technology was used to monitor mitogen activated protein kinase (MAPKs) and NF-κB activation. Reverse transcription polymerase chain reaction (RT-PCR) method was applied to observe intercellular cell adhesion molecule-1 (ICAM-1) and E-selectin mRNA level; EC surface ICAM-1 expression was measured with flow cytometry and leukocyte adhesion to EC was assayed with Rose Bengal spectrophotometry technology.
RESULTSHSYA protected EC viability against LPS-induced injury (P <0.05). LPS-induced NF-κB p65 subunit DNA binding (P <0.01) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) phosphorylation was inhibited by HSYA. HSYA attenuated LPS triggered ICAM-1 and E-selectin mRNA levels elevation and phosphorylation of p38 MAPK or c-Jun N-terminal kinase MAPK. HSYA also inhibited LPS-induced cell surface ICAM-1 protein expression P <0.01) and leukocyte adhesion to EC (P <0.05).
CONCLUSIONHSYA is effective to protect LPS-induced high expression of endothelium adhesive molecule and inflammatory signal transduction.
Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Cell Survival ; drug effects ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; therapeutic use ; E-Selectin ; genetics ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; pathology ; Humans ; I-kappa B Proteins ; metabolism ; Inflammation ; drug therapy ; pathology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Leukocytes ; cytology ; drug effects ; Lipopolysaccharides ; MAP Kinase Signaling System ; drug effects ; NF-KappaB Inhibitor alpha ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Protein Binding ; drug effects ; Quinones ; chemistry ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
9.Preparation and evaluation of doxorubicin hydrochloride liposomes modified by poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate.
Di ZHANG ; Jian-ying LI ; Xiao-chan WANG ; Hong-xin YUE ; Mei-na HU ; Xiu YU ; Huan XU
Acta Pharmaceutica Sinica 2015;50(9):1174-1179
In this study, the buffering capacity of amphiphilic pH-sensitivity copolymer poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (PEOZ-CHMC) was evaluated. The ammonium sulfate gradient method was used to prepare doxorubicin hydrochloride (DOX x HCl)-loaded liposomes (DOX-L), and then the post-insertion method was used to prepare PEOZ-CHMC and polyethylene glycol-distearoyl phosphatidyl ethanolamine (PEG-DSPE) modified DOX x HCl-loaded liposomes (PEOZ-DOX-L and PEG-DOX-L). The physico-chemical properties, in vitro drugs release behavior, cellular toxicity and intracellular delivery of liposomes were evaluated, separately. The results showed that PEOZ-CHMC has a satisfactory buffering capacity. The sephadex G-50 column centrifugation method and dynamic light scattering were used to determine the encapsulation efficiency (EE) and particle size of liposomes. The EE and particle size of DOX-L were (97.3 ± 1.4) % and 120 nm, respectively, and the addition of PEOZ-CHMC or PEG-DSPE had no influence on EE and particle size. The zeta potentials of three kinds of liposomes were negative. The release behavior of various DOX liposomes in vitro was investigated by dialysis method. In phosphate buffer solution (PBS) at pH 7.4, DOX x HCl was released from PEOZ-DOX-L in a sustained manner. While in PBS at pH 5.0, the release rate of DOX x HCl from PEOZ-DOX-L increased significantly, which suggested DOX x HCl was released from PEOZ-DOX-L in a pH-dependent manner. The intracellular delivery of liposomes was investigated by confocal laser scanning microscopy (CLSM). The CLSM images indicated that PEOZ-DOX-L showed efficient intracellular trafficking including endosomal escape and release DOX x HCl into nucleus, as well as the DOX-L and PEG-DOX-L had no this effect. The cytotoxicity of liposomes against MCF-7 cells was detected by using MTT assay. The results showed that antiproliferative effects of PEOZ-DOX-L enhanced with pH value decreased, whereas DOX-L and PEG-DOX-L did not have any significant difference in inhibitions at different pH conditions. Therefore, the problems of the inhibition of cellular uptake of liposomes and the failed endosomal escape of pH-sensitive liposomes by PEG chain can be overcome by the pH-sensitive liposomes constructed by PEOZ-CHMC.
Cell Nucleus
;
Doxorubicin
;
analogs & derivatives
;
chemistry
;
Endosomes
;
Formates
;
chemistry
;
Humans
;
Liposomes
;
chemistry
;
MCF-7 Cells
;
Microscopy, Confocal
;
Particle Size
;
Phosphatidylethanolamines
;
Polyamines
;
chemistry
;
Polyethylene Glycols
;
chemistry
10.Identification of nuclear localization signals of pseudorabies virus gene UL49.
Chinese Journal of Virology 2014;30(4):436-440
Tegument protein VP22 is encoded by Pseudorabies Virus (PRV) UL49. To identify the nuclear localization signals of UL49, it is necessary to determine the transport mechanism and biological functions of the VP22 protein. In this study, we identified two nuclear localization signals from UL49, NLS1 (5RKTRVA ADETASGARRR21) and NLS2 (241PGRKGKV247). The functional nuclear localization signal (NLS) of UL49 was identified by constructing truncated or site-specific UL49 mutants. The deletion of both NLS1 and NLS2 abrogated UL49 nuclear accumulation, whereas the deletion of NLS1 or NLS2 did not. Therefore, both NLS1 and NLS2 are critical for the nuclear localization of UL49. And our resuts showed that NLS2 is more important in this regard.
Animals
;
COS Cells
;
Cell Nucleus
;
metabolism
;
virology
;
Cercopithecus aethiops
;
Herpesvirus 1, Suid
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Nuclear Localization Signals
;
Protein Transport
;
Pseudorabies
;
metabolism
;
virology
;
Viral Structural Proteins
;
chemistry
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail