1.Driving effect of P16 methylation on telomerase reverse transcriptase-mediated immortalization and transformation of normal human fibroblasts.
Xuehong ZHANG ; Paiyun LI ; Ying GAN ; Shengyan XIANG ; Liankun GU ; Jing ZHOU ; Xiaorui ZHOU ; Peihuang WU ; Baozhen ZHANG ; Dajun DENG
Chinese Medical Journal 2025;138(3):332-342
BACKGROUND:
P16 inactivation is frequently accompanied by telomerase reverse transcriptase ( TERT ) amplification in human cancer genomes. P16 inactivation by DNA methylation often occurs automatically during immortalization of normal cells by TERT . However, direct evidence remains to be obtained to support the causal effect of epigenetic changes, such as P16 methylation, on cancer development. This study aimed to provide experimental evidence that P16 methylation directly drives cancer development.
METHODS:
A zinc finger protein-based P16 -specific DNA methyltransferase (P16-Dnmt) vector containing a "Tet-On" switch was used to induce extensive methylation of P16 CpG islands in normal human fibroblast CCD-18Co cells. Battery assays were used to evaluate cell immortalization and transformation throughout their lifespan. Cell subcloning and DNA barcoding were used to track the diversity of cell evolution.
RESULTS:
Leaking P16-Dnmt expression (without doxycycline-induction) could specifically inactivate P16 expression by DNA methylation. P16 methylation only promoted proliferation and prolonged lifespan but did not induce immortalization of CCD-18Co cells. Notably, cell immortalization, loss of contact inhibition, and anchorage-independent growth were always prevalent in P16-Dnmt&TERT cells, indicating cell transformation. In contrast, almost all TERT cells died in the replicative crisis. Only a few TERT cells recovered from the crisis, in which spontaneous P16 inactivation by DNA methylation occurred. Furthermore, the subclone formation capacity of P16-Dnmt&TERT cells was two-fold that of TERT cells. DNA barcoding analysis showed that the diversity of the P16-Dnmt&TERT cell population was much greater than that of the TERT cell population.
CONCLUSION
P16 methylation drives TERT -mediated immortalization and transformation of normal human cells that may contribute to cancer development.
Humans
;
Telomerase/genetics*
;
DNA Methylation/physiology*
;
Fibroblasts/cytology*
;
Cyclin-Dependent Kinase Inhibitor p16/metabolism*
;
Cell Line
;
Cell Transformation, Neoplastic/genetics*
2.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
3.A behind-the-scenes role of BDNF in the survival and differentiation of spermatogonia.
Shin-Ichi TOMIZAWA ; Kazushige KUROHA ; Michio ONO ; Kuniko NAKAJIMA ; Kazuyuki OHBO
Asian Journal of Andrology 2025;27(1):37-43
Mouse spermatogenesis entails the maintenance and self-renewal of spermatogonial stem cells (SSCs), which require a complex web-like signaling network transduced by various cytokines. Although brain-derived neurotrophic factor (BDNF) is expressed in Sertoli cells in the testis, and its receptor tropomyosin receptor kinase B (TrkB) is expressed in the spermatogonial population containing SSCs, potential functions of BDNF for spermatogenesis have not been uncovered. Here, we generate BDNF conditional knockout mice and find that BDNF is dispensable for in vivo spermatogenesis and fertility. However, in vitro , we reveal that BDNF -deficient germline stem cells (GSCs) exhibit growth potential not only in the absence of glial cell line-derived neurotrophic factor (GDNF), a master regulator for GSC proliferation, but also in the absence of other factors, including epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin. GSCs grown without these factors are prone to differentiation, yet they maintain expression of promyelocytic leukemia zinc finger ( Plzf ), an undifferentiated spermatogonial marker. Inhibition of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and Src pathways all interfere with the growth of BDNF-deficient GSCs. Thus, our findings suggest a role for BDNF in maintaining the undifferentiated state of spermatogonia, particularly in situations where there is a shortage of growth factors.
Animals
;
Male
;
Brain-Derived Neurotrophic Factor/genetics*
;
Spermatogonia/cytology*
;
Mice
;
Spermatogenesis/genetics*
;
Mice, Knockout
;
Cell Differentiation
;
Glial Cell Line-Derived Neurotrophic Factor/genetics*
;
Promyelocytic Leukemia Zinc Finger Protein/genetics*
;
Cell Survival/physiology*
;
Signal Transduction/physiology*
;
Cell Proliferation/physiology*
4.ANXA2 and NF-κB positive feedback loop promotes high glucose-induced pyroptosis in renal tubular epithelial cells.
Jiayi YANG ; Yang LUO ; Zixuan ZHU ; Wenbin TANG
Journal of Central South University(Medical Sciences) 2025;50(6):940-954
OBJECTIVES:
Pyroptosis plays a critical role in tubulointerstitial lesions of diabetic kidney disease (DKD). Annexin A2 (ANXA2) is involved in cell proliferation, apoptosis, and adhesion and may be closely related to DKD, but its specific mechanism remains unclear. This study aims to investigate the role and molecular mechanism of ANXA2 in high glucose-induced pyroptosis of renal tubular epithelial cells, providing new targets for DKD prevention and treatment.
METHODS:
Human renal tubular epithelial HK-2 cells were divided into a normal glucose group (5.5 mmol/L), a high glucose group (30.0 mmol/L), and a osmotic control group (24.5 mmol/L mannitol+5.5 mmol/L glucose). ANXA2 expression was modulated by overexpression of plasmids and small interfering RNA (siRNA). Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) assay, apoptosis by flow cytometry, and ANXA2, p50, and p65 subcellular localization by immunofluorescence. Western blotting was employed to detect α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type IV (Col-IV). Real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting were used to analyze nuclear factor-κB (NF-κB) subunits p50/p65 and the pyroptosis pathway factors NLR family Pyrin domain containing 3 (NLRP3), caspase-1, inferleukin (IL)-1β, and IL-18. Protein interactions between ANXA2 and p50/p65 were examined by co-immunoprecipitation, while chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to examine NF-κB binding to the ANXA2 promoter.
RESULTS:
High glucose upregulated ANXA2 expression and promoted its nuclear translocation (P<0.01). High glucose reduced cell proliferation, increased apoptosis, and elevated α-SMA, FN, and Col-IV expression (all P<0.05); ANXA2 overexpression aggravated these effects (all P<0.05), while ANXA2 knockdown reversed them (all P<0.05). High glucose activated NF-κB and increased NLRP3, caspase-1, L-1β, and IL-18 mRNA and protein expression (all P<0.05); ANXA2 overexpression further enhanced this, whereas knockdown suppressed NF-κB activation and downstream factors (all P<0.05). Co-immunoprecipitation confirmed ANXA2 directly binds the NF-κB subunit p65. ChIP assays revealed p65 binds specifically to ANXA2 promoter regions (ChIP-2, ChIP-4, and ChIP-6), and luciferase activity in corresponding mutant constructs (M2, M4, and M6) was significantly increased versus controls (all P<0.05), confirming positive transcriptional regulation of ANXA2 by p65.
CONCLUSIONS
ANXA2 and NF-κB form a positive feedback loop that sustains NLRP3 inflammasome activation, promotes pyroptosis pathway activation, and aggravates high glucose-induced renal tubular epithelial cell injury. Targeting ANXA2 or blocking its interaction with p65 may be a novel strategy to slow DKD progression.
Humans
;
Pyroptosis/drug effects*
;
Annexin A2/physiology*
;
Epithelial Cells/cytology*
;
Kidney Tubules/cytology*
;
Glucose/pharmacology*
;
Diabetic Nephropathies/metabolism*
;
NF-kappa B/metabolism*
;
Cell Line
;
Cell Proliferation
;
Transcription Factor RelA/metabolism*
;
Feedback, Physiological
5.Effect of retinoic acid on delayed encephalopathy after acute carbon monoxide poisoning: Role of the lncRNA SNHG15/LINGO-1/BDNF/TrkB axis.
Fangling HUANG ; Su'e WANG ; Zhengrong PENG ; Xu HUANG ; Sufen BAI
Journal of Central South University(Medical Sciences) 2025;50(6):955-969
OBJECTIVES:
The neurotoxicity of carbon monoxide (CO) to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Our previous study found that retinoic acid (RA) can suppress the neurotoxic effects of CO. This study further explores, in vivo and in vitro, the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.
METHODS:
A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO, and a DEACMP animal model was established in adult Kunming mice. Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Annexin V/propidium iodide (PI) double staining. The transcriptional and protein expression of each gene was detected using real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting. Long noncoding RNA (lncRNA) SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes. In DEACMP mice, SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.
RESULTS:
RA at 10 and 20 μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes, downregulation of SNHG15 and LINGO-1, and upregulation of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) (all P<0.05). Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity (all P<0.05). Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels (all P<0.05). Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP (all P<0.05).
CONCLUSIONS
RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes, thereby reducing central nervous system injury and exerting neuroprotective effects. LncRNA SNHG15 and LINGO-1 are key molecules mediating RA-induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway. These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
Animals
;
RNA, Long Noncoding/physiology*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Carbon Monoxide Poisoning/complications*
;
Mice
;
Tretinoin/pharmacology*
;
Nerve Tissue Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Apoptosis/drug effects*
;
Hippocampus/cytology*
;
Receptor, trkB/metabolism*
;
Neurons/drug effects*
;
Male
;
Brain Diseases/etiology*
;
Oligodendroglia/drug effects*
;
Signal Transduction
;
Cell Line
6.Lipopolysaccharide Stimulates Surfactant Protein-A in Human Renal Epithelial HK-2 Cells through Upregulating Toll-like Receptor 4 Dependent MEK1/2-ERK1/2-NF-κB Pathway.
Jiao LIU ; Guang LI ; Wen-Jie XIE ; Lu WANG ; Rui ZHANG ; Ke-Sheng HUANG ; Qing-Shan ZHOU ; De-Chang CHEN
Chinese Medical Journal 2017;130(10):1236-1243
BACKGROUNDSurfactant protein-A (SP-A) contributes to the regulation of sepsis-induced acute kidney injury. In a previous study, we demonstrated that the expression of SP-A in the human renal tubular epithelial (HK-2) cells can be stimulated by lipopolysaccharide (LPS). The present study evaluated the possible signal-transducing mechanisms of LPS-induced SP-A biosynthesis in the HK-2 cells.
METHODSTetrazolium salt colorimetry (MTT) assay was used to detect cell viability of HK-2 cells after LPS stimulation on different time points. HK-2 cells were stimulated with 100 ng/ml of LPS for different durations to determine the effects of LPS on SP-A and toll-like receptor 4 (TLR4) messenger RNA (mRNA) expression, as well as phosphorylation of mitogen-activated/extracellular signal-regulated kinase (MEK) 1, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38MAPK), and nuclear factor-kappa B (NF-κB) inhibitor-alpha (IkB-α). Then, HK-2 cells were pretreated with CLI-095, a TLR4 inhibitor, to analyze mRNA and protein levels of SP-A and TLR4 and expression of NF-κB in the cytoplasm and nucleus of HK-2 before LPS exposure.
RESULTSHK-2 cells exposed to 100 ng/ml of LPS for 1, 6, and 24 h did not affect cell viability which showed no toxic effect of 100 ng/ml LPS on cells (P = 0.16); however, the biosynthesis of SP-A mRNA and protein in HK-2 cells was significantly increased (P = 0.02). As to the mechanism, LPS enhanced transmembrane receptor TLR4 protein expression. Sequentially, LPS time dependently augmented phosphorylation of MEK1, ERK1/2, and p38MAPK. In addition, levels of phosphorylated IκB-α and nuclear NF-κB were augmented with LPS exposure for 2 h. LPS-induced SP-A and TLR4 mRNA as well as NF-κB expression were significantly inhibited by pretreatment with CLI-095.
CONCLUSIONSThe present study exhibited that LPS can increase SP-A synthesis in human renal epithelial cells through sequentially activating the TLR4-related MEK1-ERK1/2-NF-κB-dependent pathway.
Cell Line ; Cell Survival ; drug effects ; physiology ; Colorimetry ; Humans ; Kidney ; cytology ; metabolism ; Lipopolysaccharides ; toxicity ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; NF-kappa B ; metabolism ; Pulmonary Surfactant-Associated Protein A ; metabolism ; Sulfonamides ; pharmacology ; Tetrazolium Salts ; chemistry ; Toll-Like Receptor 4 ; antagonists & inhibitors ; metabolism
7. Modulates Vaginal Epithelial Cell Innate Response to.
Xiao-Xi NIU ; Ting LI ; Xu ZHANG ; Su-Xia WANG ; Zhao-Hui LIU
Chinese Medical Journal 2017;130(3):273-279
BACKGROUNDVulvovaginal candidiasis is caused by Candida albicans. The vaginal epithelium, as the first site of the initial stage of infection by pathogens, plays an important role in resisting genital tract infections. Moreover, lactobacilli are predominant members of the vaginal microbiota that help to maintain a normal vaginal microenvironment. Therefore, Lactobacillus crispatus was explored for its capacity to intervene in the immune response of vaginal epithelial cells VK2/E6E7 to C. albicans.
METHODSWe examined the interleukin-2 (IL-2), 4, 6, 8, and 17 produced by VK2/E6E7 cells infected with C. albicans and treated with L. crispatus in vitro. The capacity of L. crispatus to adhere to VK2/E6E7 and inhibit C. albicans growth was also tested by scanning electron microscopy (SEM) and adhesion experiments.
RESULTSCompared with group VK2/E6E7 with C. albicans, when treated with L. crispatus, the adhesion of C. albicans to VK2/E6E7 cells decreased significantly by 52.87 ± 1.22%, 47.03 ± 1.35%, and 42.20 ± 1.55% under competition, exclusion, and displacement conditions, respectively. SEM revealed that the invasion of C. albicans into VK2/E6E7 cells was caused by induced endocytosis and active penetration. L. crispatus could effectively protect the cells from the virulence of hyphae and spores of C. albicans and enhance the local immune function of the VK2/E6E7 cells. The concentrations of IL-2, 6, and 17 were upregulated significantly (P < 0.01) and that of IL-8 were downregulated significantly (P < 0.01) in infected VK2/E6E7 cells treated with L. crispatus. The concentration of IL-4 was similar to that of the group VK2/E6E7 with C. albicans (24.10 ± 0.97 vs. 23.12 ± 0.76 pg/ml, P = 0.221).
CONCLUSIONSL. crispatus can attenuate the virulence of C. albicans, modulate the secretion of cytokines and chemokines, and enhance the immune response of VK2/E6E7 cells in vitro. The vaginal mucosa has a potential function in the local immune responses against pathogens that can be promoted by L. crispatus.
Candida albicans ; pathogenicity ; Cell Line, Tumor ; Epithelial Cells ; immunology ; metabolism ; microbiology ; ultrastructure ; Female ; Humans ; Interleukin-17 ; metabolism ; Interleukin-2 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-6 ; metabolism ; Interleukin-8 ; metabolism ; Lactobacillus crispatus ; physiology ; Microscopy, Electron, Scanning ; Vagina ; cytology
8.Effect of shift rotation culture on formation and activity of encapsulated hepatocytes aggregates.
Yanshan CHEN ; Chengbo YU ; Hongcui CAO ; Lanjuan LI
Journal of Zhejiang University. Medical sciences 2016;45(4):403-409
To observe the effect of uniform and shift rotation culture on the formation and activity of the alginate-chitosan (AC) microencapsulated HepLL immortalized human hepatocytes and HepG2 cells aggregates.AC microcapsulated HepG2 and HepLL cells were randomly divided into two groups. Each group was divided into 3 subgroups according to uniform and shift rotation culture.The size and number of aggregates were observed and measured under laser confocal microscopy and inverted microscope dynamically. The amount of albumin synthesis was detected by ELISA, the clearance of ammonia was detected by colorimetry, and diazepam conversion function was detected by high performance liquid chromatography (HPLC).On day 6, 8, 10, 12, 14 and 16, the number and size of the aggregates, albumin synthesis, diazepam clearance and ammonium clearance increased significantly in shift rotation culture group than in uniform group (all<0.01). The albumin synthesis, diazepam clearance, and ammonium clearance in the microencapsulated HepLL groups were significantly higher than those of HepG2 cells at any time (all<0.01).Shift rotation culture can significantly promote the formation and increase the activity of AC microencapsulated HepLL and HepG2 aggregates, and HepLL cells may be more suitable for bioartificial liver than HepG2.
Albumins
;
biosynthesis
;
metabolism
;
Alginates
;
Ammonia
;
metabolism
;
Animals
;
Cell Aggregation
;
physiology
;
Cell Culture Techniques
;
methods
;
Cell Line, Transformed
;
physiology
;
Chitosan
;
Diazepam
;
metabolism
;
Glucuronic Acid
;
Hep G2 Cells
;
cytology
;
physiology
;
Hepatocytes
;
cytology
;
physiology
;
Hexuronic Acids
;
Humans
;
Liver, Artificial
;
Rotation
9.Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival.
Yaoting DENG ; Yurika MATSUI ; Wenfei PAN ; Qiu LI ; Zhi-Chun LAI
Protein & Cell 2016;7(5):362-372
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Actins
;
metabolism
;
Adaptor Proteins, Signal Transducing
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
physiology
;
Bridged Bicyclo Compounds, Heterocyclic
;
pharmacology
;
Cell Line, Tumor
;
Connective Tissue Growth Factor
;
genetics
;
metabolism
;
pharmacology
;
Cytochalasin D
;
pharmacology
;
Fatty Acids, Nonesterified
;
pharmacology
;
HEK293 Cells
;
Humans
;
Immunohistochemistry
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
Palmitic Acid
;
pharmacology
;
Phosphoproteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Rats
;
Recombinant Proteins
;
genetics
;
metabolism
;
pharmacology
;
Thiazolidines
;
pharmacology
10.Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop.
Liang CHEN ; Zhimin PENG ; Qinghang MENG ; Maureen MONGAN ; Jingcai WANG ; Maureen SARTOR ; Jing CHEN ; Liang NIU ; Mario MEDVEDOVIC ; Winston KAO ; Ying XIA
Protein & Cell 2016;7(5):338-350
Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IκB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c-Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.
Adenoviridae
;
genetics
;
Animals
;
Autocrine Communication
;
physiology
;
Cell Line
;
Cell Movement
;
Cellular Senescence
;
Genetic Vectors
;
genetics
;
metabolism
;
I-kappa B Kinase
;
deficiency
;
genetics
;
metabolism
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
Mice
;
Myofibroblasts
;
cytology
;
metabolism
;
NADPH Oxidases
;
metabolism
;
Oxidative Stress
;
Promoter Regions, Genetic
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
Superoxide Dismutase
;
genetics
;
metabolism
;
Transcription Factor AP-1
;
metabolism
;
Transforming Growth Factor beta
;
genetics
;
metabolism
;
Up-Regulation

Result Analysis
Print
Save
E-mail