1.Effect of Nucleolin on Lymphoma Proliferation by Regulating Thymidine Kinase 1.
Xu-Qiao MEI ; Jian-Da HU ; Ting YANG ; A-Yang WU ; Yu-Huang XU ; Zi-Hang LIN ; Cong-Meng LIN
Journal of Experimental Hematology 2023;31(3):699-706
OBJECTIVE:
To investigate the mechanism of nucleolin (NCL) involved in lymphoma proliferation by regulating thymidine kinase 1 (TK1).
METHODS:
Twenty-three patients with diffuse large B-cell lymphoma (DLBCL) were selected and divided into initial treatment group (14 cases) and relapsed/refractory group (9 cases). Serum TK1 and C23 protein in peripheral blood mononuclear cells were detected. Cell models of CA46-NCL-KD (CA46-NCL-knockdown) and CA46-NCL-KNC (CA46-NCL-knockdown negative control) were established by lentivirus vector mediated transfection in Burkitt lymphoma cell line CA46. The half maximal inhibitory concentration (IC50) of CA46-NCL-KD, CA46-NCL-KNC, and CA46 to adriamycin were detected by cell proliferation assay (MTS). The expression of NCL mRNA and protein in CA46-NCL-KD and CA46-NCL-KNC cells were dectected by Q-PCR and Western blot, respectively. The cell cycle of CA46-NCL-KD, CA46-NCL-KNC, and CA46 cells were detected by flow cytometry. The expression of TK1 protein in CA46-NCL-KD and CA46-NCL-KNC cells was detected by an enhanced chemiluminescence (ECL) dot blot assay.
RESULTS:
The level of serum TK1 in the initial treatment group was 0.43(0-30-1.01) pmol/L, which was lower than 10.56(2.19-14.99) pmol/L in the relapsed/refractory group (P<0-01), and the relative expression level of NCL protein in peripheral blood was also significantly lower. The IC50 of CA46-C23-KD cells to adriamycin was (0.147±0.02) μg/ml, which was significantly lower than (0.301±0.04) μg/ml of CA46-C23-KNC cells and (0.338±0.05) μg/ml of CA46 cells (P<0.05). Compared with CA46-NCL-KNC cells, the expression of NCL mRNA and protein, TK1 protein decreased in CA46-NCL-KD cells, and the proportion of S phase and G2/M phase also decreased, while G0/G1 phase increased in cell cycle.
CONCLUSION
The increased expression of NCL in DLBCL and CA46 cells indicates low sensitivity to drug. NCL may participate in regulation of lymphoma proliferation by affecting TK1 expression, thereby affecting the drug sensitivity.
Humans
;
Leukocytes, Mononuclear/metabolism*
;
Apoptosis
;
Cell Line, Tumor
;
Lymphoma
;
Thymidine Kinase/pharmacology*
;
Doxorubicin/pharmacology*
;
Cell Division
;
RNA, Messenger/genetics*
2.MiR-203a-5p Inhibits Multiple Myeloma Cell Proliferation and Cell Cycle Progression via Targeting JAG1.
Yue ZHANG ; Ting-Ting CHEN ; He-Bing ZHOU ; Wen-Ming CHEN
Journal of Experimental Hematology 2023;31(3):801-809
OBJECTIVE:
To investigate the biological function of miR-203a-5p and the underlying mechanism in multiple myeloma (MM).
METHODS:
Three miRNA expression profiles (GSE16558, GSE24371 and GSE17498) were downloaded from the GEO database. The three miRNA expression profiles contained 131 MM samples and 17 normal plasmacyte samples. The robust rank aggregation (RRA) method was used to identify the differentially expressed miRNAs between MM and normal plasmacytes. In order to carry out cytological experiments, MM cell line with stable over-expression of miR-203a-5p was constructed with lentivirus. Expression levels of miR-203a-5p in MM cells were quantified by qRT-PCR. The effects of miR-203a-5p on MM cells were investigated using assays of cell viability and cell cycle. Cell proliferation was measured using the Cell Counting kit (CCK)8 assay. The percentage of cells in each cell cycle was measured with a FACSCalibur system. Xenograft tumor models were established to evaluate the role of miR-203a-5p in tumorigenesis in vivo . To elucidate the underlying molecular mechanisms of miR-203a-5p in mediating cell proliferation inhibition and cell cycle arrest in MM, we used TargetScan and miRanda to predict the candidate targets of miR-203a-5p. The potential target of miR-203a-5p in MM cells was explored using the luciferase reporter assay, qRT-PCR, and Western blot.
RESULTS:
An integrated analysis of three MM miRNA expression datasets showed that the levels of miR-203a-5p in MM were notably downregulated compared with those in normal plasmacytes. Accordingly, the relative expression levels of miR-203a-5p were decreased in MM cell lines. In addition, overexpression of miR-203a-5p inhibited the proliferation and cell cycle progression of RPMI8226 and U266 cells. In vivo experiments demonstrated that upregulation of miR-203a-5p expression could significantly inhibit the tumorigenesis of subcutaneous myeloma xenografts in nude mice. Mechanistic investigation led to the identification of Jagged 1 (JAG1) as a novel and direct downstream target of miR-203a-5p. Interestingly, the reintroduction of JAG1 abrogated miR-203a-5p-induced MM cell growth inhibition and cell cycle arrest.
CONCLUSION
Our data demonstrate that miR-203a-5p inhibits cell proliferation and cell cycle progression in MM cells by targeting JAG1, supporting the utility of miR-203a-5p as a novel and potential therapeutic agent for miRNA-based MM therapy.
Animals
;
Mice
;
Humans
;
Multiple Myeloma/pathology*
;
Cell Line, Tumor
;
Mice, Nude
;
MicroRNAs/metabolism*
;
Cell Division
;
Cell Proliferation
;
Disease Models, Animal
;
Carcinogenesis/genetics*
;
Gene Expression Regulation, Neoplastic
;
Jagged-1 Protein/metabolism*
3.RITA selectively inhibits proliferation of BAP1-deficient cutaneous melanoma cells in vitro.
Wenhui SHI ; Xiaolian LIU ; Guiming ZHANG ; Linxuan YE ; Runhua ZHOU ; Yilei LI ; Le YU
Journal of Southern Medical University 2023;43(5):710-717
OBJECTIVE:
To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.
METHODS:
Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.
RESULTS:
The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).
CONCLUSION
Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.
Humans
;
Melanoma
;
Skin Neoplasms
;
Tumor Suppressor Protein p53
;
Apoptosis
;
Cell Division
;
Tumor Suppressor Proteins/genetics*
;
Ubiquitin Thiolesterase/genetics*
4.Effects of Methionine Restriction on Proliferation, Cell Cycle, and Apoptosis of Human Acute Leukemia Cells.
Yu-Jie HE ; Si-Shu YU ; Bin ZHANG ; Mei-Rong LI ; Li-Jun XU ; Long-Ming LIANG ; Zheng-Gang ZHAO ; Zi-Jian ZHAO ; Su-Jin ZHOU ; Fang-Hong LI
Journal of Experimental Hematology 2023;31(5):1290-1295
OBJECTIVE:
To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells.
METHODS:
Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay.
RESULTS:
Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells.
CONCLUSION
Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.
Humans
;
Cyclin B1/pharmacology*
;
Cell Proliferation
;
Methionine/pharmacology*
;
Cell Cycle
;
Apoptosis
;
Leukemia, Myeloid, Acute
;
Cell Division
;
Cell Cycle Proteins
;
Jurkat Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
HL-60 Cells
5.Mechanism of Proliferation and Apoptosis of Acute Promyelocytic Leukemia Cell Line NB4 Induced by TPA.
Pan ZHAO ; Chong ZHANG ; Xue-Mei DONG ; Lu-Wei YAN ; Le-Yuan MI ; Ya-Jiao LI ; Jia-Chao KANG ; Jing WANG
Journal of Experimental Hematology 2023;31(5):1296-1302
OBJECTIVE:
To investigate the effect of phorbol-12-myristate-13-ace-tate (TPA) on the proliferation and apoptosis of acute promyelocytic leukemia cell line NB4 and its molecular mechanism.
METHODS:
The effect of different concentrations of TPA on the proliferation of NB4 cells at different time points was detected by CCK-8 assay. The morphological changes of NB4 cells were observed by Wright-Giemsa staining. The cell cycle and apoptosis of NB4 cells after TPA treatment were detected by flow cytometry. The mRNA expressions of NB4 cells after TPA treatment were analyzed by high-throughput microarray analysis and real-time quantitative PCR. Western blot was used to detect the protein expression of CDKN1A, CDKN1B, CCND1, MYC, Bax, Bcl-2, c-Caspase 3, c-Caspase 9, PIK3R6, AKT and p-AKT.
RESULTS:
Compared with the control group, TPA could inhibit the proliferation of NB4 cells, induce the cells to become mature granulocyte-monocyte differentiation, and also induce cell G1 phase arrest and apoptosis. Differentially expressed mRNAs were significantly enriched in PI3K/AKT pathway. TPA treatment could increase the mRNA levels of CCND1, CCNA1, and CDKN1A, while decrease the mRNA level of MYC. It could also up-regulate the protein levels of CDKN1A, CDKN1B, CCND1, Bax, c-Caspase 3, c-Caspase 9, and PIK3R6, while down-regulate MYC, Bcl-2, and p-AKT in NB4 cells.
CONCLUSION
TPA induces NB4 cell cycle arrest in G1 phase and promotes its apoptosis by regulating PIK3/AKT signaling pathway.
Humans
;
Leukemia, Promyelocytic, Acute
;
Caspase 3/metabolism*
;
Caspase 9/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Cell Line, Tumor
;
Cell Division
;
Apoptosis
;
RNA, Messenger
;
Cell Proliferation
6.Discovery of small molecule degraders for modulating cell cycle.
Liguo WANG ; Zhouli YANG ; Guangchen LI ; Yongbo LIU ; Chao AI ; Yu RAO
Frontiers of Medicine 2023;17(5):823-854
The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.
Humans
;
Cell Cycle/physiology*
;
Cell Division
;
Cyclin-Dependent Kinases/metabolism*
;
Cyclins/metabolism*
7.Deficiency of two-pore segment channel 2 contributes to systemic lupus erythematosus via regulation of apoptosis and cell cycle.
Keke LI ; Jingkai XU ; Ke XUE ; Ruixing YU ; Chengxu LI ; Wenmin FEI ; Xiaoli NING ; Yang HAN ; Ziyi WANG ; Jun SHU ; Yong CUI
Chinese Medical Journal 2022;135(4):447-455
BACKGROUND:
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, and the mechanism of SLE is yet to be fully elucidated. The aim of this study was to explore the role of two-pore segment channel 2 (TPCN2) in SLE pathogenesis.
METHODS:
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of TPCN2 in SLE. We performed a loss-of-function assay by lentiviral construct in Jurkat and THP-1 cell. Knockdown of TPCN2 were confirmed at the RNA level by qRT-PCR and protein level by Western blotting. Cell Count Kit-8 and flow cytometry were used to analyze the cell proliferation, apoptosis, and cell cycle of TPCN2-deficient cells. In addition, gene expression profile of TPCN2-deficient cells was analyzed by RNA sequencing (RNA-seq).
RESULTS:
TPCN2 knockdown with short hairpin RNA (shRNA)-mediated lentiviruses inhibited cell proliferation, and induced apoptosis and cell-cycle arrest of G2/M phase in both Jurkat and THP-1 cells. We analyzed the transcriptome of knockdown-TPCN2-Jurkat cells, and screened the differential genes, which were enriched for the G2/M checkpoint, complement, and interleukin-6-Janus kinase-signal transducer and activator of transcription pathways, as well as changes in levels of forkhead box O, phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin, and T cell receptor pathways; moreover, TPCN2 significantly influenced cellular processes and biological regulation.
CONCLUSION
TPCN2 might be a potential protective factor against SLE.
Apoptosis/genetics*
;
Cell Division
;
Humans
;
Jurkat Cells
;
Lupus Erythematosus, Systemic/genetics*
;
RNA, Small Interfering/genetics*
8.Effects of matrine combined with LY294002 on proliferation, apoptosis and cell cycle of human myeloid leukemia K562 cells.
Yan Mei HAO ; Jun Li JI ; Chun Yi LIU ; Nan ZHANG ; Ya Juan GONG
Journal of Southern Medical University 2022;42(11):1739-1746
OBJECTIVE:
To investigate the effects of matrine combined with LY294002 on proliferation, apoptosis and cell cycle of human myeloid leukemia K562 cells and explore the underlying mechanism.
METHODS:
The effects of different concentrations of matrine alone and in combination with LY294002 on the proliferation of K562 cells were examined with CCK-8 assay. The changes in morphology of K562 cells were observed following treatment for 48 h with 0.4 g/L matrine and 10 μmol/L Y294002, either alone or in combination, and cell apoptosis was detected using flow cytometry with annexin V-FITC/PI double labeling; the changes in cell cycle was detected with PI labeling. Western blotting was performed to examine the effect of matrine combined with LY294002 on expressions of p-mTOR, p-PI3K, Akt, p-Akt, cyclinD1, Bcl-2 and caspase-9 in the cells.
RESULTS:
Treatment with different concentrations of matrine, both alone and in combination with LY294002, inhibited the proliferation of K562 cells in a time- and concentration-dependent manner. Compared with matrine treatment alone, the combined treatment caused more obvious morphological changes of the cells, significantly increased cell apoptosis (P < 0.01), and induced cell cycle arrest in G0/G1 (P < 0.01). Western blotting showed that the protein expression levels of p-mTOR, cyclinD1, p-PI3K, p-Akt and Bcl-2 in K562 cells increased while the expression level of caspase-9 decreased significantly after the combined treatment (P < 0.01).
CONCLUSION
Matrine combined with LY294002 produces a synergistic inhibitory effect on K562 cells possibly by down-regulating the p-Akt expression in PI3K/Akt signaling pathway, reducing the expressions of p-mTOR, cyclinD1 and Bcl-2, and increasing the expression of caspase-9.
Humans
;
K562 Cells
;
Caspase 9
;
Matrines
;
Phosphatidylinositol 3-Kinases
;
Cell Cycle
;
Cell Division
;
Leukemia, Myeloid
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2
9.Effects of Tripterine on Adhesion Molecules and Cell Cycle in Human Acute Promyelocytic Leukemia Model Mice.
Deng-Peng SONG ; Sheng-Ying WU
Journal of Experimental Hematology 2021;29(1):72-76
OBJECTIVE:
To observe the effects of tripterine on adhesion molecules and cell biological characteristics in mice with acute promyelocytic leukemia (APL) tumor.
METHODS:
Eighteen SCID beige mice were caudal vein injected with NB4 cell lines (5×10
RESULTS:
The neutrophil decrased and promyelocytes, NB4 cells, B lymphocytes and white blood cells increased in tumor-bearing group as compared with control group (P<0.05), and the expressions of serum P-selectin (P-selectin), soluble vascular adhesion molecule-1 (soluble vascular adhesion molecule-1, sVCAM-1) and soluble intercellular adhesion molecule-1 (soluble intercellular adhesion molecule-1, sICAM-1) all increased (P<0.05). The cell cycle showed that the proportion of G
CONCLUSION
Tripterine may not only inhibit the expression of sVCAM-1 and sICAM-1 proteins in APL tumor-bearing mice and reduce the adhesion of tumor cells, but also block tumor cells at G
Animals
;
Cell Cycle
;
Cell Division
;
Humans
;
Intercellular Adhesion Molecule-1
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Mice
;
Mice, SCID
;
Triterpenes
;
Vascular Cell Adhesion Molecule-1
10.Effects of RPA1 down-regulation on the invasion and migration and cell cycle of human nasopharyngeal carcinoma CNE-2R cells with radio resistance.
Zi-Xin ZHANG ; Hai-Yang LU ; Zhi-Hua YANG ; Chang-Hu LIU ; Wen-Hua ZHAN ; Hong ZHE ; Ren ZHAO
Chinese Journal of Applied Physiology 2021;37(5):490-494

Result Analysis
Print
Save
E-mail