1.From 2D to 3D: transforming malignant bone tumor research with advanced culture models.
Zhengcheng HE ; Haitao HUANG ; Jiale FANG ; Huiping LIU ; Xudong YAO ; Hongwei WU
Journal of Zhejiang University. Science. B 2025;26(11):1059-1075
Osteosarcoma (OS), chondrosarcoma (CS), and Ewing sarcoma (ES) represent primary malignant bone tumors and pose significant challenges in oncology research and clinical management. Conventional research methods, such as two-dimensional (2D) cultured tumor cells and animal models, have limitations in recapitulating the complex tumor microenvironment (TME) and often fail to translate into effective clinical treatments. The advancement of three-dimensional (3D) culture technology has revolutionized the field by enabling the development of in vitro constructed bone tumor models that closely mimic the in vivo TME. These models provide powerful tools for investigating tumor biology, assessing therapeutic responses, and advancing personalized medicine. This comprehensive review summarizes the recent advancements in research on 3D tumor models constructed in vitro for OS, CS, and ES. We discuss the various techniques employed in model construction, their applications, and the challenges and future directions in this field. The integration of advanced technologies and the incorporation of additional cell types hold promise for the development of more sophisticated and physiologically relevant models. As research in this field continues to evolve, we anticipate that these models will play an increasingly crucial role in unraveling the complexities of malignant bone tumors and accelerating the development of novel therapeutic strategies.
Bone Neoplasms/pathology*
;
Humans
;
Osteosarcoma/pathology*
;
Tumor Microenvironment
;
Sarcoma, Ewing/pathology*
;
Chondrosarcoma/pathology*
;
Animals
;
Cell Culture Techniques/methods*
;
Cell Culture Techniques, Three Dimensional/methods*
;
Cell Line, Tumor
2.Research progress in engineered hydrogels for organoids.
Ziran CHEN ; Rong HUANG ; Pengyu LI ; Yan LU ; Kai LI ; Wei SONG
Chinese Journal of Biotechnology 2025;41(8):3036-3048
Organoids are three-dimensional (3D) cellular structures formed through the differentiation and self-organization of pluripotent stem cells or tissue-derived cells, showing considerable potential in the research on disease mechanism, personalized medicine, and developmental biology. However, the development of organoids is limited by the complex composition, batch-to-batch variations, and immunogenicity of basement-membrane matrix in the current culture system, which hinders the clinical translation and in vivo applications of organoids. Hydrogels are highly hydrated 3D polymer network materials, with modifiable mechanical and biochemical properties by engineering, representing an ideal alternative to basement-membrane matrix. This article reviews the research progress in engineered hydrogels with defined composition currently used in organoid culture. We introduce the structural characteristics and engineering design considerations of hydrogels, emphasize the latest research progress and specific application cases, and discuss the future development of these engineered hydrogels, provide valuable insights for the further advancement and optimization of engineered hydrogels for organoid.
Hydrogels/chemistry*
;
Organoids/cytology*
;
Tissue Engineering/methods*
;
Humans
;
Animals
;
Pluripotent Stem Cells/cytology*
;
Cell Culture Techniques, Three Dimensional/methods*
;
Tissue Scaffolds
3.Fabrication of three-dimensional microwell patterns and their integration with C17. 2 neural stem cells.
Liguang ZHANG ; Zezhi WU ; Zhaoquan SONG ; Qiping HUANG ; Yanjian LIAO ; Chenzhong LI
Journal of Biomedical Engineering 2012;29(3):555-562
UV photolithography and hydrofluoric acid wet etching were used to produce silicon master molds and polydimethylsiloxane (PMDS)-based soft lithography was adopted to fabricate three-dimensional poly(lactic-co-glycolic acid) (PLGA) and PDMS microwell patterns with high aspect ratio and channel connection. Nine microwell patterns were thus obtained with different structural dimensions. Patterns were treated with oxygen plasma etching and polylysine coating to enhance hydrophilicity and cell compatibility for subsequent culture of C17. 2 neural stem cells. With proliferation during the culture, C17. 2 cells gradually distributed within the microwells, showing an obviously three-dimensional (3-D) growth behavior. The presence of channel structures greatly favored the 3-D growth of C17. 2 neural stem cells on the microwell patterns. Multi-layered scanning with confocal microscopy and 3-D rendering after carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) staining showed that most C17. 2 cells grew within a range of 30 to 90 microm from the microwell bottom. Immunofluorescence staining indicated that C17. 2 cells within 3-D microwell patterns were uniformly nestin-positive on day 2 after cell plating. It could well be concluded that the microwell patterns thus fabricated were suitable for the 3-D culture and subsequent differentiation of C17. 2 neural stem cells. And the cells can be maintained with uniform stemness properties while cultured in these microwell patterns.
Cell Culture Techniques
;
methods
;
Dimethylpolysiloxanes
;
chemistry
;
Imaging, Three-Dimensional
;
Intermediate Filament Proteins
;
metabolism
;
Lactic Acid
;
chemistry
;
Microscopy, Confocal
;
Nerve Tissue Proteins
;
metabolism
;
Nestin
;
Neural Stem Cells
;
cytology
;
Polyglycolic Acid
;
chemistry

Result Analysis
Print
Save
E-mail