1.Integrins in human hepatocellular carcinoma tumorigenesis and therapy.
Qiong GAO ; Zhaolin SUN ; Deyu FANG
Chinese Medical Journal 2023;136(3):253-268
Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Humans
;
Integrins/metabolism*
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Cell Adhesion
;
Carcinogenesis
;
Cell Transformation, Neoplastic
;
Tumor Microenvironment
2.Mechanism of total flavonoids of Ziziphora clinopodioides in improving atherosclerosis by regulating PI3K/Akt/mTOR pathway.
Xiao-Yu MA ; Hao-Ran ZHAO ; Hui-Lin QIAO ; You-Cheng ZENG ; Xuan-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(2):465-471
The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.
Animals
;
Mice
;
Apolipoproteins E
;
Atherosclerosis/genetics*
;
Beclin-1
;
Cholesterol, LDL
;
Intercellular Adhesion Molecule-1
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Plaque, Atherosclerotic
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
3.Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma.
Qian WU ; Yong-Bin WANG ; Xiao-Wen CHE ; Hui WANG ; Wei WANG
Journal of Integrative Medicine 2023;21(3):268-276
OBJECTIVE:
Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown.
METHODS:
Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting.
RESULTS:
JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML.
CONCLUSION
JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Junctional Adhesion Molecules/metabolism*
;
Kaempferols/pharmacology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Adenocarcinoma of Lung/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Lung Neoplasms/metabolism*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
4.IgG Fc binding protein (FCGBP) as a prognostic marker of low-grade glioma and its correlation analysis with immune infiltration.
Qiao LIU ; Jiarui ZHANG ; Fuqin ZHANG ; Wei ZHANG ; Li GONG
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):686-692
Objective To identify the possibility of IgG Fc binding protein (FCGBP) acting as a prognostic marker of low-grade glioma (LGG) and its correlation with immune infiltration. Methods The expression of FCGBP was analyzed in pan-cancer using The Cancer Genome Atlas (TCGA), Genotypic tissue expression (GTEX), and China Glioma Genome Atlas (CGGA) database. Then, GSE15824 and GSE68848 datasets were selected for further verification. And gene expression Profile Interaction analysis (GEPIA) database and R language were used to analyze the relationship between FCGBP and survival prognosis. Metascape and GSEA were used for functional annotation and enrichment analysis. Finally, the expression of FCGBP gene in LGG immune microenvironment and its correlation with immune cells were analyzed by TIMER database. Results FCGBP was highly expressed in LGG tissues, indicating poor prognosis of LGG patients. Receiver operating characteristic (ROC) curve analysis and COX analysis showed that FCGBP was an independent risk factor for the prognosis of LGG. Moreover, Gene Ontology (GO) demonstrated that FCGBP was involved in cell metabolism, localization, positive, and negative regulation of biological processes, as well as biological adhesion, response to viral and microbial stimulation, and inflammation. GSEA pathway enrichment analysis showed that FCGBP was significantly correlated with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, Toll-like receptor (TLR) pathway, chemokine pathway, and P53 pathway. In addition, FCGBP expression was positively correlated with the expression of most immune cells in the immune microenvironment of LGG. Conclusion The high expression of FCGBP in LGG is a risk factor for survival and prognosis, and it is positively correlated with the expression of immune cells.
Humans
;
Prognosis
;
Glioma/genetics*
;
China
;
Gene Ontology
;
Immunoglobulin G
;
Tumor Microenvironment
;
Cell Adhesion Molecules
5.Effect of Isodon ternifolius-medicated serum on hepatic stellate cells based on TLR4/NF-κB/NLRP3 signaling pathway.
Gui-Dong HUANG ; Zhi-Pin ZHOU ; Zhi PANG ; Le QIN ; Rui-Sheng WU ; Yong CHEN ; Xiao-Xue YE
China Journal of Chinese Materia Medica 2023;48(14):3913-3921
The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.
NF-kappa B/metabolism*
;
Hepatic Stellate Cells
;
Transforming Growth Factor beta1/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Intercellular Adhesion Molecule-1/metabolism*
;
Isodon
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Signal Transduction
;
Colchicine/pharmacology*
;
Caspases
6.Analysis of Significant Genes and Pathways in Esophageal Cancer Based on Gene Expression Omnibus Database.
An-Yi SONG ; Lan MU ; Xiao-Yong DAI ; Li-Jun WANG ; Lai-Qiang HUANG
Chinese Medical Sciences Journal 2023;38(1):20-28
Objective To screen antigen targets for immunotherapy by analyzing over-expressed genes, and to identify significant pathways and molecular mechanisms in esophageal cancer by using bioinformatic methods such as enrichment analysis, protein-protein interaction (PPI) network, and survival analysis based on the Gene Expression Omnibus (GEO) database.Methods By screening with highly expressed genes, we mainly analyzed proteins MUC13 and EPCAM with transmembrane domain and antigen epitope from TMHMM and IEDB websites. Significant genes and pathways associated with the pathogenesis of esophageal cancer were identified using enrichment analysis, PPI network, and survival analysis. Several software and platforms including Prism 8, R language, Cytoscape, DAVID, STRING, and GEPIA platform were used in the search and/or figure creation.Results Genes MUC13 and EPCAM were over-expressed with several antigen epitopes in esophageal squamous cell carcinoma (ESCC) tissue. Enrichment analysis revealed that the process of keratinization was focused and a series of genes were related with the development of esophageal cancer. Four genes including ALDH3A1, C2, SLC6A1,and ZBTB7C were screened with significant P value of survival curve.Conclusions Genes MUC13 and EPCAM may be promising antigen targets or biomarkers for esophageal cancer. Keratinization may greatly impact the pathogenesis of esophageal cancer. Genes ALDH3A1, C2, SLC6A1,and ZBTB7C may play important roles in the development of esophageal cancer.
Humans
;
Esophageal Neoplasms/metabolism*
;
Esophageal Squamous Cell Carcinoma/metabolism*
;
Epithelial Cell Adhesion Molecule/metabolism*
;
Gene Expression Profiling/methods*
;
Gene Regulatory Networks
;
Gene Expression
;
Gene Expression Regulation, Neoplastic
;
Intracellular Signaling Peptides and Proteins
7.Neutrophil extracellular traps activates focal adhesion kinase by upregulating MMP9 expression to promote proliferation and migration of mouse colorectal cancer cells.
Yi HE ; Songlin HOU ; Changyuan MEMG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):416-422
Objective To investigate how the neutrophil extracellular traps (NETs) affect the proliferation and migration of mouse MC38 colorectal cancer cells and its mechanism. Methods Spleen neutrophils were extracted in mouse, followed by collection of NETs after ionomycin stimulation in vitro. The proliferation of MC38 cell was detected by CCK-8 assay, and migration ability were detected by TranswellTM and cell scratch assay, after co-incubation with MC38 cells. The mRNA expression of cellular matrix metalloproteinase 2 (MMP2) and MMP9 were detected by real-time fluorescence quantitative PCR, and the expression of MMP2, MMP9 and focal adhesion kinase (FAK), phosphorylated FAK protein were detected by Western blot. After silencing MMP9 using small interfering RNA (siRNA), the effect of NETs on the proliferation and migration ability of MC38 cells and the altered expression of related molecules were examined by previous approach. Results NETs promoted the proliferation and migration of MC38 cells and up-regulated the MMP9 expression and FAK phosphorylation. Silencing MMP9 inhibited the promotion of MC38 proliferation and migration by NETs and suppressed FAK phosphorylation. Conclusion NETs up-regulates MMP9 expression in MC38 cells, activates FAK signaling pathway and promotes tumor cell proliferation and migration.
Animals
;
Mice
;
Focal Adhesion Protein-Tyrosine Kinases/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Extracellular Traps/metabolism*
;
Cell Movement
;
Cell Proliferation
;
RNA, Small Interfering/genetics*
;
Colorectal Neoplasms/genetics*
;
Cell Line, Tumor
8.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
9.Detection of DNA methylation of HYAL2 gene for differentiating malignant from benign thyroid tumors.
Yi Fei YIN ; Hong LI ; Chun Sheng YANG ; Min Min ZHANG ; Xuan Dong HUANG ; Meng Xia LI ; Rong Xi YANG ; Zheng Dong ZHANG
Journal of Southern Medical University 2022;42(1):123-129
OBJECTIVE:
To assess the value of DNA methylation level of HYAL2 gene as a molecular marker for differential diagnosis of malignant and benign thyroid tumors.
METHODS:
DNA methylation of HYAL2 gene in tissue specimens of 190 patients with papillary thyroid cancer (PTC) and 190 age- and gender-matched patients with benign thyroid tumors was examined by mass spectrometry, and the protein expression of HYAL2 was detected immunohistochemically for another 55 pairs of patients. Logistic regression analysis was performed to calculate the odds ratio (OR) and evaluate the correlation of per 10% reduction in DNA methylation with PTC. Receiver operating characteristic (ROC) curve analysis was performed and the area under curve (AUC) was calculated to assess the predictive value of alterations in HYAL2 methylation.
RESULTS:
Hypomethylation of HYAL2_CpG_3 was significantly correlated with early-stage PTC (OR=1.51, P=0.001), even in stage I cancer (OR=1.42, P=0.007). Age-stratified analysis revealed a significantly stronger correlation between increased HYAL2_CpG_ 3 methylation and early-stage PTC in patients below 50 years than in those older than 50 years (OR: 1.89 vs 1.37, P < 0.05); ROC analysis also showed a larger AUC of 0.787 in younger patients. The results of immunohistochemistry showed that patients with PTC had significantly higher protein expressions of HYAL2 than patients with benign tumors.
CONCLUSION
The alterations of DNA methylation level of HYAL2 gene is significantly correlated with early-stage PTC, suggesting the value of DNA methylation level as a potential biomarker for differentiation of malignant from benign thyroid tumors.
Adenoma, Oxyphilic/genetics*
;
Biomarkers, Tumor/metabolism*
;
Cell Adhesion Molecules/metabolism*
;
DNA Methylation
;
GPI-Linked Proteins/metabolism*
;
Humans
;
Hyaluronoglucosaminidase/metabolism*
;
Immunohistochemistry
;
Middle Aged
;
Thyroid Cancer, Papillary/pathology*
;
Thyroid Neoplasms/pathology*
10.Impact and mechanism of CHL1 in insulin resistant adipocytes and insulin resistant mouse model induced by high glucose and high fat.
Jing TAO ; Jun LIU ; Yu Juan YUAN ; Xin SHEN ; Hui CHENG ; Guo Qing LI
Chinese Journal of Cardiology 2022;50(11):1094-1102
Objective: To investigate the role and mechanism of cell adhesion molecule L1 like (CHL1) in insulin resistant adipocytes and insulin resistant mouse model induced by high glucose and high fat. Methods: The 3T3-L1 preadipocytes were randomly divided into control group (transfected with empty vector) and CHL1 overexpression group (transfected with CHL1 vector), cells were then induced to mature adipocytes by insulin, and insulin resistance was then induced by high sugar and high fat. The glucose content was measured to determine the glucose consumption of cells from the two groups. Protein expression levels of CHL1 and glucose transporter 4 (GLUT4), serine/threonine protein kinase (AKT) phosphorylation levels were detected by Western blot (WB), the mRNA expression levels of TNF-α and IL-6 were detected by real-time quantitative PCR (RT-qPCR). 24 C57BL/6 adult male mouse were randomly divided into conventional diet group (regular group), high-fat diet group (high-fat group), empty vector overexpression+high-fat group and CHL1 overexpression+high-fat group (n=6 each group). CHL1 overexpression was induced by tail vein injection of lentivirus. Four months later, mice were sacrificed, body weight was determined, and the epididymal white adipose tissue was collect. Hematoxylin-eosin staining (HE) was used to observe the pathology of mouse epididymal white adipose tissue, the expression of CHL1 was evaluated by immunohistochemical staining(IHC), RT-qPCR was used to detect the mRNA expression levels of CHL1, TNF-α and IL-6 in mouse epididymal white adipose tissue. Results: In vitro, glucose consumption was significantly higher in the CHL1 overexpression group than in the control group (P<0.05), and the protein expressions of CHL1 and GLUT4 were higher in the CHL1 overexpression group than those in the control group (P<0.01), and the mRNA expressions levels of TNF-α and IL-6 were lower in the CHL1 overexpression group than those in the control group (P<0.01). In vivo, the body weight and epididymal white adipose tissue of mouse were higher in the high-fat group and the empty vector overexpression+high-fat group than those in the conventional group (P<0.01), which were lower in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.01). HE results showed that the volume of epididymal white adipocytes was larger in the high-fat group and the overexpression control+high-fat group than that in the conventional group, which was smaller in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.01). The mRNA expression levels of IL-6 and TNF-α in epididymal white adipose tissue of mice were higher in the high-fat group and the empty vector overexpression+high-fat group than those in the conventional group (P<0.01), which were lower in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.05). IHC results showed that protein expression of CHL1 in epididymal white adipose tissue was lower in the high-fat group and the empty vector overexpression+high-fat group than in regular group, which was upregulated in the CHL1 overexpression+high fat group than in the empty vector overexpression+high-fat group (P<0.01). RT-qPCR results showed that mRNA expression of CHL1 in epididymal white adipose tissue was lower in the high-fat group and the empty vector overexpression+high-fat group than in regular group (P<0.01), which was higher in the CHL1 overexpression+high fat group than in the empty vector overexpression+high fat group (P<0.01). Conclusion: Overexpression of CHL1 can improve insulin resistance in adipocytes and mouse insulin resistance model induced by high glucose and high fat, and the beneficial effects might be mediated by the inhibition of AKT activation and the reduction of related inflammatory responses.
Male
;
Mice
;
Animals
;
Insulin
;
Insulin Resistance
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Proto-Oncogene Proteins c-akt
;
Mice, Inbred C57BL
;
Adipocytes
;
Disease Models, Animal
;
Glucose
;
Body Weight
;
RNA, Messenger
;
Cell Adhesion Molecules

Result Analysis
Print
Save
E-mail