1.Role of ATG12 in The Development of Disease
Wei LIU ; Rui TIAN ; Ce-Fan ZHOU ; Jing-Feng TANG
Progress in Biochemistry and Biophysics 2025;52(5):1081-1098
Autophagy, a highly conserved cellular degradation mechanism, maintains intracellular homeostasis by removing damaged organelles and abnormal proteins. Its dysregulation is closely associated with various diseases. Autophagy-related protein 12 (ATG12), a core member of the ubiquitin-like protein family, covalently binds to ATG5 through a ubiquitin-like conjugation system to form the ATG12-ATG5-ATG16L1 complex. This complex directly regulates the formation and maturation of autophagosomes, making ATG12 a key molecule in the initiation of autophagy. Recent studies have revealed that ATG12 functions extend far beyond the classical autophagy context. It promotes apoptosis by binding to anti-apoptotic proteins of the Bcl-2 family (e.g., Bcl-2 and Mcl-1) and enhances host antiviral immunity by regulating the NF-κB and interferon signaling pathways. Moreover, ATG12 deficiency can lead to mitochondrial biogenesis impairment, energy metabolism disorders, and substrate-dependent metabolic shifts, underscoring its pivotal role in cellular metabolic homeostasis. At the disease level, dysregulation of ATG12 expression is closely linked to tumorigenesis and cancer progression. By modulating the dynamic balance between autophagy and apoptosis, ATG12 influences cancer cell proliferation, metastasis, and chemoresistance. Notably, ATG12 is abnormally overexpressed in multiple cancers, including breast, liver, and gastric cancer, highlighting its potential as a therapeutic target. Furthermore, in neurodegenerative diseases such as Parkinson’s disease, ATG12 mitigates protein toxicity by enhancing mitochondrial autophagy. In cardiovascular diseases, it alleviates ischemia-reperfusion injury by regulating cardiomyocyte autophagy and apoptosis, demonstrating its broad regulatory role across various pathological conditions. Genetic studies further underscore the clinical significance of ATG12. Polymorphisms in the ATG12 gene (e.g., rs26537 and rs26538) have been significantly associated with the risk of head and neck squamous cell carcinoma, hepatocellular carcinoma, and atrophic gastritis. Notably, the risk allele of rs26537 enhances ATG12 promoter activity, leading to its overexpression and promoting tumorigenesis. These findings provide a molecular basis for individualized risk assessment and targeted interventions based on ATG12 genotype. Despite significant progress, many aspects of ATG12 biology remain unclear. The precise regulatory mechanisms of its post-translational modifications (e.g., ubiquitination and acetylation) are yet to be fully elucidated. Additionally, the molecular pathways underlying its non-canonical functions, such as metabolic regulation and immune modulation, require further investigation. Moreover, the functional heterogeneity of ATG12 in different tumor microenvironments and its role in drug resistance warrant in-depth exploration. Future research should integrate advanced technologies such as cryo-electron microscopy, single-cell sequencing, and organoid models to decipher the intricate regulatory network of ATG12. Additionally, developing small-molecule inhibitors or gene-editing tools targeting its protein interaction interfaces (e.g., the ATG12-ATG3 binding domain) may help overcome current therapeutic challenges. Through interdisciplinary collaboration and clinical translation, ATG12 holds promise as a next-generation molecular target for precision intervention in autophagy-related diseases. This review summarizes the structure and function of ATG12, its role in autophagy initiation, its physiological functions, and its involvement in disease pathogenesis. Furthermore, it discusses future research directions and potential challenges, emphasizing ATG12’s potential as a biomarker and therapeutic target in autophagy-related diseases.
2.Influencing factors of overactive bladder in college freshmen and the impacts on anxiety,quality of life,and social interaction
Guowei SI ; Ce GAO ; Sida SHAO ; Feng SI ; Yakai LIU ; Songyang WANG ; Maochuan FAN ; Huiqing ZHANG ; Qifeng DOU ; Jianguo WEN
Journal of Modern Urology 2025;30(6):513-519
Objective: To investigate the influencing factors of overactive bladder (OAB) in college freshmen and the impacts of OAB on their mental health, quality of life and social interaction. Methods: An epidemiological questionnaire survey was conducted in an anonymous manner on the prevalence of OAB among 5300 freshmen aged 17 to 22 years enrolled in the 2023—2024 academic year in Xinxiang Medical University and Sanquan College of Xinxiang Medical University.The questionnaire included questions on basic information, history of urinary tract infection, constipation, smoking, history of alcohol consumption, history of coffee/strong tea drinking, history of carbonated beverage drinking, redundant prepuce, phimosis, holding urine, chronic insomnia, self-rating anxiety scale (SAS), quality of life score (QoL), and social avoidance and distress scale (SADS).The influencing factors of OAB were analyzed with multivariate logistic regression analysis.The subjects were grouped according to whether they had OAB, and the differences in SAS, QoL and SADS between the OAB group and non-OAB group were compared.The impacts of OAB on the anxiety level, quality of life, and social interaction were analyzed with multiple linear regression analysis. Results: The overall prevalence rate of OAB was 4.9% (244/5018).Multivariate logistic regression analysis showed that the history of urinary tract infection (OR=0.177), constipation (OR=0.636), smoking (OR=0.582), alcohol consumption (OR=0.685), coffee/strong tea drinking (OR=0.387), carbonated beverage drinking (OR=0.631), redundant prepuce (OR=0.673), phimosis (OR=0.311), urine holding (OR=0.593), and chronic insomnia (OR=0.256) were influencing factors for the occurrence of OAB (P<0.05).The OAB group had higher SAS score [(41.18±6.54) vs. (38.61±6.36)], QoL score [(3.65±1.20) vs. (2.79±0.95)], social avoidance score [(6.25±1.86) vs. (5.86±1.51)], social distress score [(6.27±1.59) vs. (5.97±1.32)], and total SADS score [(12.51±2.35) vs. (11.84±2.01)] than the non-OAB group (P<0.05).The results of multiple linear regression analysis showed that OAB could independently affect the scores of QoL, SAS, and SADS.The OAB group had higher scores of QoL, SAS, and SADS compared with the non-OAB group (P<0.001). Conclusion: History of urinary tract infection, constipation, smoking, alcohol consumption, coffee/strong tea drinking, carbonated beverage drinking, redundant prepuce, phimosis, urine holding, and chronic insomnia are influencing factors for the occurrence of OAB in male college students.Moreover, OAB has negative impacts on their mental health, quality of life, and social interaction.
3.Implications of left atrial volume index in patients with three-vessel coronary disease: A 6.6-year follow-up cohort study
Ru LIU ; Lei SONG ; Ce ZHANG ; Lin JIANG ; Jian TIAN ; Lianjun XU ; Xinxing FENG ; Linyuan WAN ; Xueyan ZHAO ; Ou XU ; Chongjian LI ; Runlin GAO ; Rutai HUI ; Wei ZHAO ; Jinqing YUAN
Chinese Medical Journal 2024;137(4):441-449
Background::Risk assessment and treatment stratification for three-vessel coronary disease (TVD) remain challenging. This study aimed to investigate the prognostic value of left atrial volume index (LAVI) with the Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score II, and its association with the long-term prognosis after three strategies (percutaneous coronary intervention [PCI], coronary artery bypass grafting [CABG], and medical therapy [MT]) in patients with TVD.Methods::This study was a post hoc analysis of a large, prospective cohort of patients with TVD in China, that aimed to determine the long-term outcomes after PCI, CABG, or optimal MT alone. A total of 8943 patients with TVD were consecutively enrolled between 2004 and 2011 at Fuwai Hospital. A total of 7818 patients with available baseline LAVI data were included in the study. Baseline, procedural, and follow-up data were collected. The primary endpoint was major adverse cardiac and cerebrovascular events (MACCE), which was a composite of all-cause death, myocardial infarction (MI), and stroke. Secondary endpoints included all-cause death, cardiac death, MI, revascularization, and stroke. Long-term outcomes were evaluated among LAVI quartile groups. Results::During a median follow-up of 6.6 years, a higher LAVI was strongly associated with increased risk of MACCE (Q3: hazard ratio [HR] 1.20, 95% confidence interval [CI] 1.06-1.37, P = 0.005; Q4: HR 1.85, 95%CI 1.64-2.09, P <0.001), all-cause death (Q3: HR 1.41, 95% CI 1.17-1.69, P <0.001; Q4: HR 2.54, 95%CI 2.16-3.00, P <0.001), and cardiac death (Q3: HR 1.81, 95% CI 1.39-2.37, P <0.001; Q4: HR 3.47, 95%CI 2.71-4.43, P <0.001). Moreover, LAVI significantly improved discrimination and reclassification of the SYNTAX score II. Notably, there was a significant interaction between LAVI quartiles and treatment strategies for MACCE. CABG was associated with lower risk of MACCE than MT alone, regardless of LAVI quartiles. Among patients in the fourth quartile, PCI was associated with significantly increased risk of cardiac death compared with CABG (HR: 5.25, 95% CI: 1.97-14.03, P = 0.001). Conclusions::LAVI is a potential index for risk stratification and therapeutic decision-making in patients with three-vessel coronary disease. CABG is associated with improved long-term outcomes compared with MT alone, regardless of LAVI quartiles. When LAVI is severely elevated, PCI is associated with higher risk of cardiac death than CABG.
4.KRT6A mediates the Wnt/β-catenin signal pathway regulating EMT promoting radiation resistance in non-small cell lung cancer A549 cells
Journal of China Medical University 2024;53(7):628-634
Objective To explore the effect of KRT6A on radiation resistance in non-small cell lung cancer A549 cells and its mecha-nism of action.Methods The radiation-resistant A549(A549-RR)cells were induced and established.The successful construction of the cells were performed using the Cell Counting Kit 8(CCK-8)method,plate clone-formation experiments,and flow cytometry.Western blot-ting was used to detect the expression of KRT6A in A549 and A549-RR cells.A549-RR cells were divided into the sh-NC,sh-KRT6A,sh-KRT6A+ov-NC,and sh-KRT6A+ov-β-catenin groups.The expression of KRT6A;β-catenin;and epithelial-mesenchymal transition(EMT)-related proteins E-cadherin,N-cadherin,vimentin,Snail,and Slug were detected by Western blotting.The CCK-8 assay,plate clone-formation experiments,and flow cytometry were used to determine the radiation resistance of the cells.Results A549-RR cells were successfully cultured.and KRT6A expression was upregulated in A549-RR cells compared to A549 cells.Knocking down KRT6A reduced the proliferative activity and clonogenic ability of A549-RR cells;increased the apoptosis rate;upregulated the expression of E-cadherin protein;and downregulated N-cadherin,vimentin,Snail,Slug,andβ-catenin protein expression.Overexpression ofβ-catenin reversed the inhibitory effect of KRT6A knockdown on EMT and radiation resistance in A549-RR cells.Conclusion KRT6A is upregu-lated in A549-RR cells,and knocking down KRT6A reduces the radiation resistance of A549-RR cells,which may be related to the induc-tion of EMT by activation of the Wnt/βcatenin signaling pathway.
5.Research and Application of the Engineered gRNA Technology in the CRISPR/Cas System
Liu TAN ; Bang-Ce YE ; Bin-Cheng YIN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(8):1078-1092
The CRISPR/Cas is an immune defense system acquired by prokaryotes to resist the invasion of foreign genetic materials during their evolutionary process.In recent years,it has been developed into an efficient tool for genome editing,gene regulation and molecular diagnosis.Its programmable targeting mechanism has opened the door to use this system for genome manipulation and allows for dynamic regu-lation and control of gene expression within its activity range.As one of the most flexible and cost-effec-tive techniques among existing gene modification methods,it has been widely applied in clinical disease treatment,industrial and agricultural production,sustainable dye development,chemical processing and many other fields.With the continuous investigation and exploration of the CRISPR/Cas system,a large number of studies have been reported on the engineering modification and optimization approaches of gRNA,including changing the length of the spacer region,regulating the structure of constant and varia-ble sequence parts,adding extra functional sequences through the end or middle extension,and chemical synthesis modifications,in order to reduce off-target and mutation rates,improve the efficiency of the CRISPR system,and fully stimulate the potential of CRISPR gene manipulation tools in biomedical fields.Based on this,this review will introduce the latest progress in gRNA engineering design strategies and application research of CRISPR/Cas9 and CRISPR/Cas12 systems,analyze and discuss the opportu-nities and challenges in the current gRNA engineering technology,aiming to provide ideas and reference directions for obtaining gRNAs with better performance,thereby effectively improving the ability to probe the human genomes using the CRISPR/Cas system and bringing more possibilities to programmable biology.
6.Construction and external validation of a non-invasive pre-hospital screening model for stroke patients: a study based on artificial intelligence DeepFM algorithm
Chenyu LIU ; Ce ZHANG ; Yuanhui CHI ; Chunye MA ; Lihong ZHANG ; Shuliang CHEN
Chinese Critical Care Medicine 2024;36(11):1163-1168
Objective:To construct a non-invasive pre-hospital screening model and early based on artificial intelligence algorithms to provide the severity of stroke in patients, provide screening, guidance and early warning for stroke patients and their families, and provide data support for clinical decision-making.Methods:A retrospective study was conducted. The clinical information of stroke patients ( n = 53?793) were extracted from the Yidu cloud big data server system of the Second Affiliated Hospital of Dalian Medical University from January 1, 2001 to July 31, 2023. Combined with the results of single factor screening and the opinions of experts with senior professional titles in neurology, the input variable was determined, and the output variable was the National Institutes of Health Stroke Scale (NIHSS) representing the severity of the disease at admission. Python 3.7 was used to build DeepFM algorithm model, and five data mining models including Logistic regression, CART decision tree, C5.0 decision tree, Bayesian network and deep neural network (DNN) were built at the same time. The original data were randomly divided into 80% training set and 20% test set, which were used to train and test the models, adjust the parameters of each model, respectively calculate the accuracy, sensitivity and F-index of the six models, carry out the comprehensive comparison and evaluation of the model. The receiver operator characteristic curve (ROC curve) and calibration curve were drawn, compared the prediction performance of DeepFM model and the other five algorithms. In addition, the data of stroke patients ( n = 1?028) were extracted from Dalian Central Hospital for external verification of the model. Results:A total of 14?015 stroke patients with complete information were selected, including 11?212 in the training set and 2?803 in the testing set. After univariate screening, 14 indicators were included to construct the model, including gender, age, recurrence, physical impairment, facial problems, speech disorders, head reactions, disturbance of consciousness, visual disorders, abnormal cough and swallowing, high risk factor, family history, smoking history and drinking history. DeepFM model adopted the two-order crossover feature. The number of hidden layers in DNN layer was 3. Dropout was used to discard the neurons in the neural network. Rule was used as the activation function. Each layer used Dense full connection. The objective function was random gradient descent. The number of iterations was 15. There were 133?922 training parameters in total. Comparing the predictive value of the six models showed that the accuracy of DeepFM model was 0.951, the sensitivity was 0.992, the specificity was 0.814, the F-index was 0.950, and the area under the curve (AUC) was 0.916. The accuracy of the other five data mining models were between 0.771-0.780, the sensitivity were between 0.978-0.987, the F-index were between 0.690-0.707, and the AUC were between 0.568-0.639. The calibration curve of the DeepFM model was more aligned with the ideal curve than the other five data mining models. Suggesting that the prediction performance of DeepFM model was the best. External validation was conducted on the DeepFM model, and its accuracy was 0.891, indicating good generalization performance of the model.Conclusion:The pre-hospital non-invasive screening prediction model based on DeepFM can accurately predict the severity grading of stroke patients, and has potential application value in rapid screening and early clinical decision-making of stroke.
7.Clinical characteristics and bacterial antimicrobial susceptibility of 42 pa-tients infected with Ralstonia pickettii
Zhen-Kui ZHU ; Ye-Hua LIU ; Ce WANG ; Hong-Zhi YU ; Chun-Lei ZHOU ; Hong MU
Chinese Journal of Infection Control 2024;23(11):1379-1383
Objective To study the clinical characteristics and bacterial antimicrobial susceptibility testing results of patients with clinically isolated Ralstonia pickettii(R.pickettii),and provide basis for the rational use of antimi-crobial agents.Methods Inpatients with R.pickettii infection who were treated at the Tianjin First Central Hospi-tal from January 2014 to December 2023 were analyzed retrospectively.Clinical characteristics and antimicrobial sus-ceptibility testing results were analyzed.Results A total of 80 strains of Ralstonia spp.were isolated over 10-year period,including 42(52.5%)non-repetitive strains of R.pickettii.Among 42 R.pickettii strains,64.3%were isolated from male patients.The strains isolated from sputum,catheter,blood,throat swabs,and drainage fluid specimens accounted for 38.1%,28.6%,19.0%,4.8%,and 2.4%,respectively.The clinical distribution of R.pickettii was highest in the intensive care unit(ICU),with a proportion of 52.4%.The number of infected patients first increased and then decreased with the years,followed by a slight fluctuation.There was no statistically signifi-cant difference in the number of infected patients in each department over the years(P>0.05).R.pickettii had higher susceptibility rates to doxycycline,levofloxacin,ciprofloxacin,and minocycline,susceptibility rates were 78.3%-90.9%,but was completely resistant to compound sulfamethoxazole and cefazolin(100%),it also had higher resistance rates to aztreonam,colistin,cefotetan,tobramycin,amikacin,ceftazidime,and gentamicin(80.0%-97.4%).There was no statistically significant difference in the resistance rates to 21 antimicrobial agents among different years(all P>0.05).Conclusion R.pickettii is mainly from ICU,and the majority of the infected population are adult males.Most strains are isolated from sputum and catheter.R.pickettii presents multidrug re-sistance.Attention should be paid to the changes in the resistance rates of antimicrobial agents,strengthen the dy-namic monitoring of bacterial resistance and guide the rational selection of antimicrobial agents in clinic,implement early and effective treatment to improve the prognosis of the patients.
8.Exploring the mechanism of anti anxiety effect of Shen-Qi-Wu-Wei-Zi (Shenqi Schisandra chinensis) based on network pharmacology and molecular docking
Ce ZHANG ; Qian HUA ; Shuo CHENG ; Chengeng DENG ; Qingyuan CAI ; Xiaoge LIU ; Yan TAN
Journal of Chinese Physician 2024;26(4):523-528
Objective:To explore the mechanism of anti anxiety (AD) effect of Shenqi Schisandra chinensis using network pharmacology and molecular docking technology.Methods:The main active ingredients of S-Q-W-W-Z (Shenqi Schisandra chinensis) were screened through the TCMSP database. The corresponding targets of the active ingredients were obtained through the TCMSP database and SymMap database. The drug active ingredient target relationship network was visualized using Cytoscape. Utilize TTD, OMIM, NCBI, Drugbank, and GeneCards databases to directly identify potential targets for anxiety. We constructed interaction diagrams of potential targets based on the String database, and used Cytoscape tool to obtain key target proteins. Gene ontology (GO) enrichment analysis and Tokyo Encyclopedia of Genomes (KEGG) signaling pathway analysis were used to identify key targets and signaling pathways for anti anxiety effects of Schisandra chinensis. AutodockTools software was used to perform molecular docking on key active ingredients and key target proteins, and their binding energies were calculated. The molecular docking results were visualized using PyMol software.Results:The 63 effective ingredients in Shen-Qi-Wu-Wei-Zi (Shenqi Schisandra chinensis) can act on anxiety disorder through 69 targets. Among them, quercetin, luteolin, and stigmasterol are the main active ingredients, and serine threonine protein kinase 1 (AKT1) protein and interleukin-6 (IL-6) protein are key target proteins. Molecular docking technology has verified the good binding ability between these key active ingredients and key target proteins. Shenqi Schisandra mainly exerted therapeutic effects on anxiety disorders by regulating Toll like receptor signaling pathways, tumor necrosis factor (TNF) signaling pathways, cancer pathways, and other pathways.Conclusions:The Shenqi Schisandra may exert anti anxiety effects by regulating related targets such as AKT1 and IL-6, regulating inflammatory reactions, cell apoptosis, and other processes.
9.Comparison on Rat Models of Acute Cerebral Infarction Due to Stasis Combined with Toxin Complicated with Cerebral-cardiac Syndrome
Mingjiang YAO ; Junyuan LI ; Yue LIU ; Ce CAO ; Guo YUAN ; Lei LI ; Jianxun LIU ; Yunling ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):112-119
ObjectiveTo observe and compare the electrocardiogram index, myocardial morphology, and connexin 43 (Cx43) expression of two rat models of acute cerebral infarction (ACI) due to stasis combined with toxin complicated with cerebral-cardiac syndrome (CCS), and to provide experimental evidence for the research on the occurrence mechanism of cardiac diseases induced by ACI and the clinical diagnosis and treatment of CCS. MethodSixty SPF-grade male SD rats were randomized into six groups (n=10): normal , syndrome of stasis combined with toxin induced by carrageenin combined with dry yeast (CA/Y), multi-infarct induced by micro-embolism (ME), middle cerebral artery occlusion (MCAO), CA/Y+ME, and CA/Y+MCAO groups. The model of syndrome of stasis combined with toxin was established by intraperitoneal injection with carrageenan (CA) at 10 mg·kg-1 on the first day and subcutaneous injection with dry yeast (Y) suspension (2 mg·kg-1) on the second day of modeling. Twenty-four hours after the modeling of ACI, the electrocardiograms (ECGs) of rats in each group were collected and the number/percentage (%) of abnormal ECG was calculated. The infarct area of the brain was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and myocardial injury was assessed by hematoxylin-eosin (HE) staining. Immumohistochemical staining and Western blot were employed to determine the expression of Cx43 in the myocardium. ResultA certain number of rats in each model group presented abnormal ECG. Compared with the normal group and CA/Y group, CA/Y+MCAO group had the highest rate of abnormal ECG (P<0.01). Compared with the normal, CA/Y, ME, and CA/Y+ME groups, the CA/Y+ME and CA/Y+MCAO groups showed decreased amplitudes of P-wave and T-wave, shortened P-R interval, and extended Q-T interval, which were particularly obvious in the CA/Y+MCAO group (P<0.05, P<0.01) and in accordance with the cerebral infarction area and pathological changes. The expression of Cx43 was up-regulated in both CA/Y+ME and CA/Y+MCAO groups, especially in the CA/Y+MCAO group (P<0.01). ConclusionThe two rat models of ACI due to stasis combined with toxin complicated with CCS can be used to study the mechanism of heart diseases caused by cerebrovascular diseases and the therapeutic effects of Chinese medicines with the functions of resolving stasis and detoxifying. Moreover, the CA/Y+MCAO method has higher abnormal electrocardiogram rate, severer myocardial pathological injury, and higher expression of Cx43 protein. The models can be chosen according to specific experimental purpose.
10.Shuangshen Ningxin Capsules Regulates Mitochondrial Fission and Fusion to Alleviate Myocardial Ischemia-reperfusion Injury in Rats
Gaojie XIN ; Yuanyuan CHEN ; Zixin LIU ; Yue YOU ; Ce CAO ; Aoao WANG ; Hongxu MENG ; Xiao HAN ; Jianxun LIU ; Lei LI ; Jianhua FU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):87-94
ObjectiveTo explore whether the mechanism of Shuangshen Ningxin capsules (SSNX) in alleviating myocardial ischemia-reperfusion injury (MIRI) in rats is related to the regulation of mitochondrial fission and fusion. MethodThis study focused on Sprague Dawley (SD) rats and ligated the left anterior descending branch of the coronary artery to construct a rat model of MIRI. The rats were divided into the sham operation group, model group, SSNX group (90 mg·kg-1) and trimetazidine group (5.4 mg·kg-1). The activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were detected by micro method. Changes in mitochondrial membrane potential (△Ψm) and the degree of mitochondrial permeability transition pore (mPTP) opening were detected by the chemical fluorescence method. The intracellular adenosine triphosphate (ATP) level was detected by the luciferase assay. The messenger ribonucleic acid (mRNA) and protein expression levels of mitochondrial fission and fusion related factors dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), optic atrophy protein 1 (OPA1), mitochondrial outer membrane fusion protein 1 (MFN1), and MFN2 were detected by real-time polymerase chain reaction (real-time PCR) and Western blot. ResultCompared with the sham operation group, the model group showed a decrease in serum SOD activity and an increase in MDA content. The opening level of mPTP, the level of △Ψm and ATP content decreased, the protein expressions of mitochondrial fission factors DRP1 and FIS1 increased, and the protein expressions and mRNA transcription levels of fusion related factors OPA1 and MFN1 decreased. Compared with the model group,SSNX significantly increased serum SOD activity, reduced MDA content, increased intracellular ATP level and △Ψm, reduced the opening level of mPTP, downregulated the protein expressions of mitochondrial fission factors DRP1 and FIS1, and increased the mRNA transcription levels and protein expressions of fusion related factors OPA1 and MFN1. ConclusionSSNX inhibits the expressions of mitochondrial fission factors DRP1 and FIS1, and increases the expressions of fusion related factors OPA1 and MFN1, inhibiting mitochondrial fission and increasing mitochondrial fusion, thereby alleviating MIRI.

Result Analysis
Print
Save
E-mail