1.Antipyretic effects of ethanol extracts of Arisaematis Rhizoma fermented with bile from different sources.
Run ZOU ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(7):1781-1791
This study aims to investigate the antipyretic effects and mechanisms of ethanol extracts from Arisaematis Rhizoma fermented with bile from different sources on a rat model of fever induced by a dry-yeast suspension. The rat model of fever was established by subcutaneous injection of 20% dry-yeast suspension into the rat back. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) in the serum, as well as prostaglandin E_2(PGE_2) and cyclic adenosine monophosphate(cAMP) in the hypothalamus, were determined by ELISA. Metabolomics analysis was then performed on serum and hypothalamus samples based on UPLC-Q-TOF MS to explore the potential biomarkers and metabolic pathways. The results showed that the body temperatures of rats significantly rose 4 h after modeling. After oral administration of high-dose ethanol extracts of Arisaematis Rhizoma fermented with bovine bile(NCH) and porcine bile(ZCH), the body temperatures of rats declined(P<0.05), and the NCH group showed better antipyretic effect than the ZCH group. Additionally, compared with the model group, the NCH and ZCH groups showed lowered levels of IL-1β, IL-6, TNF-α, PGE_2, and cAMP(P<0.01). The results of serum and hypothalamus metabolomics analysis indicated that both NCH and ZCH exerted antipyretic effects by regulating phenylalanine metabolism, sphingolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Collectively, both NCH and ZCH can play an obvious antipyretic role in the rat model of dry yeast-induced fever, and the underlying mechanism might be closely associated with inhibiting inflammation and regulating metabolic disorders. Moreover, NCH demonstrates better antipyretic effect.
Animals
;
Rats
;
Male
;
Fermentation
;
Rats, Sprague-Dawley
;
Rhizome/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Bile/chemistry*
;
Antipyretics/chemistry*
;
Fever/metabolism*
;
Cattle
;
Swine
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/blood*
;
Interleukin-1beta/blood*
2.Probable Molecular Targeting of Inhibitory Effect of Carvacrol-Loaded Bovine Serum Albumin Nanoparticles on Human Breast Adenocarcinoma Cells.
Pouria KHODAVANDI ; Neda KARAMI ; Alireza KHODAVANDI ; Fahimeh ALIZADEH ; Esmaeel Panahi KOKHDAN ; Ahmad ZAHERI
Chinese journal of integrative medicine 2025;31(4):336-346
OBJECTIVE:
To entrap carvacrol (CAR) in bovine serum albumin nanoparticles (BSANPs) to form CAR-loaded BSANPs (CAR@BSANPs) and to explore the anti-cancer effects in breast adenocarcinoma cells (MCF-7 cells) treated with CAR and CAR@BSANPs.
METHODS:
A desolvation method was used to synthesize BSANPs and CAR@BSANPs. The BSANPs and CAR@BSANPs were characterized by several physicochemical methods, including visual observation, high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. MCF-7 cells were used and analyzed after 24 h of exposure to CAR and CAR@BSANPs at half-maximal inhibitory concentration. The anti-proliferative, apoptotic, reactive oxygen species (ROS), and nitric oxide (NO) scavenging activity as well as gene expression analysis were investigated by the cell viability assay, phase-contrast microscopy, 2',7'-dichlorofluorescein-diacetate assay, Griess-Illosvoy colorimetric assay, and quantitative real-time polymerase chain reaction, respectively.
RESULTS:
CAR and CAR@BSANPs showed anti-proliferative, apoptotic, ROS generation, and NO scavenging effects on MCF-7 cells. Expression profile of B-cell lymphoma 2-like 11 (BCL2L11), vascular endothelial growth factor A (VEGFA), hypoxia inducible factor factor-1α (HIF1A), BCL2L11/apoptosis regulator (BAX), and BCL2L11/Bcl2 homologous antagonist/killer 1 (BAK1) ratios revealed downregulated genes; and BAX, BAK1, and CASP8 were upregulated by CAR and CAR@BSANPs treatment. In vitro anticancer assays of the CAR and CAR@BSANPs showed that CAR@BSANPs demonstrated higher therapeutic efficacy in the MCF-7 cells than CAR.
CONCLUSIONS
CAR and CAR@BSANPs affect gene expression and may subsequently reduce the growth and proliferation of the MCF-7 cells. Molecular targeting of regulatory genes of the MCF-7 cells with CAR and CAR@BSANPs may be an effective therapeutic strategy against breast cancer.
Humans
;
Cymenes
;
Nanoparticles/ultrastructure*
;
MCF-7 Cells
;
Breast Neoplasms/genetics*
;
Apoptosis/drug effects*
;
Serum Albumin, Bovine/chemistry*
;
Monoterpenes/therapeutic use*
;
Adenocarcinoma/genetics*
;
Cell Proliferation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Female
;
Cell Survival/drug effects*
;
Animals
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Nitric Oxide/metabolism*
;
Cattle
3.Screening and identification of key miRNAs in post-transcriptional regulation of CART in the bovine hypothalamus.
Junli CHENG ; Junrong YAN ; Shuning HOU ; Zhiwei ZHU ; Pengfei LI
Chinese Journal of Biotechnology 2024;40(12):4557-4572
This study aimed to explore the roles of microRNAs (miRNAs) in the post-transcriptional regulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the bovine hypothalamus and to screen key regulatory miRNAs. Targetscan was used to predict the potential miRNAs binding to CART 3' untranslated regions (3'UTR). Bioinformatics analysis predicted 7 miRNA binding sites in the bovine CART 3'UTR, which were bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, bta-miR-758, bta-miR-877, and bta-miR-381, respectively. Reverse transcription-PCR (RT-PCR) was carried out to determine the endogenous expression of CART and target miRNAs in the bovine hypothalamus. All the 7 target miRNAs and CART were endogenously expressed in the bovine hypothalamus. The dual-luciferase reporter gene assay was employed to detect the targeted binding relationship between CART 3'UTR and target miRNAs obtained from bioinformatics analysis. The dual-luciferase reporter gene assay confirmed that the 3'UTR of CART had a targeted binding relationship with the 7 target miRNAs. Cell experiments were conducted to examine the effects of target miRNAs on the messenger RNA (mRNA) and protein levels of exogenous CART and screen for key regulatory miRNAs. The results of cell experiments showed that the 7 miRNAs downregulated the mRNA level of CART, with bta-miR-491 demonstrating the strongest downregulating effect. Bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, and bta-miR-381 downregulated the protein level of CART, with bta-miR-381 exerting the strongest downregulating effect. Animal experiments were conducted to explore the effects of key regulatory miRNAs on the mRNA and protein levels of CART in the hypothalamus and the CART concentration in the serum. The results from animal experiments showed that miR-491 and miR-381 regulated the endogenous expression of CART in the hypothalamus and the concentration in the serum by binding to the CART 3'UTR. These results suggest that miR-491 and miR-381 are the main miRNAs regulating CART expression in the bovine hypothalamus, which can affect serum CART concentration by modulating endogenous CART expression.
Animals
;
MicroRNAs/metabolism*
;
Cattle
;
Hypothalamus/metabolism*
;
3' Untranslated Regions/genetics*
;
Nerve Tissue Proteins/metabolism*
;
Gene Expression Regulation
;
Binding Sites
;
Base Sequence
;
Computational Biology/methods*
;
Cocaine- and Amphetamine-Regulated Transcript Protein
4.Adaptation of the electron transport chain improves the biocatalytic efficiency of progesterone 17α hydroxylation.
Lanlan WANG ; Xin ZHAO ; Jie LI ; Jiaying AI ; Jing SUN ; Shuhong MAO
Chinese Journal of Biotechnology 2023;39(11):4608-4620
17α hydroxylase is a key enzyme for the conversion of progesterone to prepare various progestational drug intermediates. To improve the specific hydroxylation capability of this enzyme in steroid biocatalysis, the CYP260A1 derived from cellulose-mucilaginous bacteria Sorangium cellulosum Soce56 and the Fpr and bovine adrenal-derived Adx4-108 derived from Escherichia coli str. K-12 were used to construct a new electron transfer system for the conversion of progesterone. Selective mutation of CYP260A1 resulted in a mutant S276I with significantly enhanced 17α hydroxylase activity, and the yield of 17α-OH progesterone reached 58% after optimization of the catalytic system in vitro. In addition, the effect of phosphorylation of the ferredoxin Adx4-108 on 17α hydroxyl activity was evaluated using a targeted mutation technique, and the results showed that the mutation Adx4-108T69E transferred electrons to S276I more efficiently, which further enhanced the catalytic specificity in the C17 position of progesterone, and the yield of 17α-OH progesterone was eventually increased to 74%. This study provides a new option for the production of 17α-OH progesterone by specific transformation of bacterial-derived 17α hydroxylase, and lays a theoretical foundation for the industrial production of progesterone analogs using biotransformation method.
Animals
;
Cattle
;
Progesterone/metabolism*
;
Hydroxylation
;
Biocatalysis
;
Electron Transport
;
Mixed Function Oxygenases/metabolism*
5.Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source.
Xue'er DU ; Linlin ZHOU ; Fan ZHANG ; Yong LI ; Congcong ZHAO ; Lamei WANG ; Junhu YAO ; Yangchun CAO
Chinese Journal of Biotechnology 2023;39(12):4927-4938
In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.
Animals
;
Cattle
;
Neocallimastigales/metabolism*
;
Anaerobiosis
;
Rumen/microbiology*
;
Propionates/metabolism*
;
Isobutyrates/metabolism*
;
Cellulose/metabolism*
;
Fungi
;
Starch/metabolism*
;
Glucose/metabolism*
;
Acetates
;
Sucrose/metabolism*
;
Cellulases
;
Cellulase
6.Prokaryotic expression and biological activities of the hemolysin BL subunit of a pathogenic Bacillus cereus of cattle origin.
Yunjiao CHEN ; Yunjiang HE ; Qinglei MENG ; Zhilin LIU ; Xin ZHANG ; Zelin JIA ; Jiayu CUI ; Xueli WANG
Chinese Journal of Biotechnology 2023;39(12):4939-4949
Bacillus cereus belongs to Gram-positive bacteria, which is widely distributed in nature and shows certain pathogenicity. Different B. cereus strains carry different subsets of virulence factors, which directly determine the difference in their pathogenicity. It is therefore important to study the distribution of virulence factors and the biological activity of specific toxins for precise prevention and control of B. cereus infection. In this study, the hemolysin BL triayl was expressed, purified, and characterized. The results showed that the bovine pathogenic B. cereus hemolysin BL could be expressed and purified in the prokaryotic expression system, and the bovine pathogenic B. cereus hemolysin BL showed hemolysis, cytotoxicity, good immunogenicity and certain immune protection in mice. In this study, the recombinant expression of hemolysin BL triayl was achieved, and the biological activity of hemolysin BL of bovine pathogenic ceroid spore was investigated. This study may facilitate further investigating the pathogenic mechanism of B. cereus hemolysin BL and developing a detection method for bovine pathogenic B. cereus disease.
Cattle
;
Animals
;
Mice
;
Bacterial Proteins/metabolism*
;
Bacillus cereus/metabolism*
;
Hemolysin Proteins/metabolism*
;
Virulence Factors/metabolism*
;
Enterotoxins/metabolism*
7.Development of a flow cytometry method for detection of bovine multi-cytokines.
Zhaocheng ZHU ; Aihong XIA ; Zhaoli CAO ; Xin LI ; Xiang CHEN ; Zhengzhong XU ; Xin An JIAO
Chinese Journal of Biotechnology 2023;39(1):347-358
This study aims to develop a method to detect bovine multi-cytokines based on flow cytometry. Previously we have prepared and screened monoclonal antibodies against bovine cytokines IFN-γ, IL-2, TNF-α, IP-10 and MCP-1. These bovine cytokine monoclonal antibodies were fluorescently labeled, and the combination of antibody and cell surface molecules were used to develop the method for detecting bovine multi-cytokines. Subsequently, the developed method was used to determine the cytokine expression profile of Mycobacterium bovis BCG infected bovine peripheral blood mononuclear cells in vitro, and evaluate the cytokine expression level of peripheral blood CD4+ T cells of tuberculosis-positive cattle. The bovine multi-cytokine flow cytometry detection method can effectively determine the cytokine expression of BCG-infected bovine peripheral blood T lymphocytes. Among them, the expression levels of IFN-γ, IL-2, and TNF-α continue to increase after 40 hours of infection, while the expression levels of IP-10 and MCP-1 decreased. The combined detection of IFN-γ, IL-2, and TNF-α on CD4+ T lymphocytes in peripheral blood of cattle can effectively distinguish tuberculosis-positive and tuberculosis-negative samples. This method may facilitate evaluating the level of cellular immune response after bovine pathogen infection and vaccine injection.
Cattle
;
Animals
;
Cytokines
;
BCG Vaccine/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-2
;
Flow Cytometry/methods*
;
Chemokine CXCL10/metabolism*
;
Leukocytes, Mononuclear
;
CD4-Positive T-Lymphocytes/metabolism*
;
Tuberculosis
;
Antibodies, Monoclonal/metabolism*
8.Effect of miR-124a on collagen-induced arthritis in mice and the underlying mechanisms.
Yan GE ; Biling YANG ; Suqing XU ; Xi XIE ; Fen LI ; Jing TIAN
Journal of Central South University(Medical Sciences) 2022;47(4):453-461
OBJECTIVES:
Rheumatoid arthritis (RA) is a chronic autoimmune disease. MicroRNA has been shown to play an important role in RA. MicroRNA-124a (miR-124a) has anti-proliferative and anti-inflammatory effects in RA fibroblast synovial cells. This study aims to explore the effects of miR-124a overexpression on arthritis in collagen-induced arthritis (CIA) mice and the underlying mechanisms.
METHODS:
Bovine type II collagen and complete Ferris adjuvant were used to induce CIA model from DBA/1 mice. Twenty-eight days after initial immunization (D28), CIA mice were randomly divided into a model group, a miR-124a treatment group, and a negative control (NC) group. Physiological saline, miR-124a agomir, and miR-124a agomir NC were injected into the skin at the tail root of mice every 3 days for 4 times, respectively. The degree of joint swelling and arthritis index of mice were recorded accordingly. Sixty-three days after initial immunization (D63), the mice were sacrificed to obtain the synovial tissue of ankle joint. HE staining was used to observe the proliferation of synovial cell, infiltration of inflammatory cell, pannus, and bone erosion of synovial tissues; TUNEL staining was used to detect cell apoptosis; qRT-PCR was used to detect the mRNA expression of miR-124a, phosphatidylinositol-3-kinase catalytic subunit alpha (PIK3CA) and its downstream genes Bcl-2 and Bax. Immunohistochemistry was used to detect the protein expression of PIK3CA, Bcl-2, and Bax protein in synovial tissues of each group.
RESULTS:
Different degrees of swelling presented in the paws of DBA/1 mice at D28, which indicated the CIA model was constructed successfully. Forty-eight days after initial immunization (D48), the paws of mice in the miR-124a treatment group were only slightly red and swollen, while the paws of mice in the model group and the NC group were obviously red and swollen. The arthritis index of mice in the miR-124a treatment group were decreased significantly compared to the NC group at D51, D53, D59, and D62 (51, 53, 59, 62 days after initial immunization) (all P<0.05). Sixty-three days after initial immunization (D63), HE staining indicated that the scores of synovial cell proliferation, inflammatory cell infiltration, synovial pannus, and bone erosion were significantly reduced in the miR-124a treatment group (P<0.05 or P<0.01), while cell apoptosis was increased in the miR-124a treatment group compared with the model group and NC group (P<0.01 or P<0.001). Besides, the expression of miR-124a and Bax in the synovial tissue in miR-124a treatment group was significantly higher than those in the model group and NC group (P<0.01 or P<0.001), while the expressions of PIK3CA and Bcl-2 were decreased (P<0.05 or P<0.01 or P<0.001), and the ratio of Bcl-2 to Bax was significantly decreased (P<0.01 or P<0.001).
CONCLUSIONS
Overexpression of miR-124a can reduce arthritis in CIA mice bacause it could promote synovial cell apoptosis and inhibit synovial cell proliferation via targeting PIK3CA and regulating its downstream pathways.
Animals
;
Arthritis, Experimental/metabolism*
;
Arthritis, Rheumatoid/genetics*
;
Cattle
;
Cell Proliferation
;
Class I Phosphatidylinositol 3-Kinases/metabolism*
;
Mice
;
Mice, Inbred DBA
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Synovial Membrane
;
bcl-2-Associated X Protein/metabolism*
9.Activity of Codonopsis canescens against rheumatoid arthritis based on TLRs/MAPKs/NF-κB signaling pathways and its mechanism.
Yu-Jie WANG ; Xiao-Yu ZHONG ; Xin-Hong WANG ; Yuan-Han ZHONG ; Lin LIU ; Fang-Yuan LIU ; Jin-Xiang ZENG ; Ji-Xiao ZHU ; Xiao-Lang DU ; Min LI ; Gang REN ; Guo-Yue ZHONG ; Xiao-Min WANG
China Journal of Chinese Materia Medica 2022;47(22):6164-6174
This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1β, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.
Animals
;
Cattle
;
Male
;
Rats
;
Arthritis, Experimental/drug therapy*
;
Arthritis, Rheumatoid/drug therapy*
;
Body Weight
;
Codonopsis/chemistry*
;
Interleukin-6/blood*
;
NF-kappa B/genetics*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Plant Extracts/therapeutic use*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/pharmacology*
10.Therapeutic Effects of Different Animal Bile Powders on Lipid Metabolism Disorders and Their Composition Analysis.
Da-Xin CHEN ; Jian-Feng CHU ; Shan LIN ; Ling ZHANG ; Hong-Wei CHEN ; Zhi-Wei SUN ; Jian-Feng XU ; Qiao-Yan CAI ; Li-Li WANG ; Jun PENG
Chinese journal of integrative medicine 2022;28(10):918-923
OBJECTIVE:
To compare the therapeutic effect of different animal bile powders on lipid metabolism disorders induced by high-fat diet in rats, and analyze the bioactive components of each animal bile powder.
METHODS:
Sixty Sprague-Dawley rats were randomly divided into 6 groups (n=10): normal diet control group, high-fat diet model group, high-fat diet groups orally treated with bear, pig, cow and chicken bile powders, respectively. Serum biochemical markers from the abdominal aorta in each group were analyzed. Changes in the body weight and liver weight were recorded. Pathohistological changes in the livers were examined. High performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to determine the composition of bioactive components in each animal bile powder.
RESULTS:
Treatment with different types of animal bile powders had different inhibitory effects on high-fat diet-induced increase of body weight and/or liver weight in rats, most notably in bear and pig bile powders (P<0.05). High-fat diet induced lipid metabolism disorder in rats, which could be reversed by treatment with all kinds of bile powders. Bear bile and chicken bile showed the most potent therapeutic effect against lipid metabolism disorder. Cow and bear bile effectively alleviated high-fat diet induced liver enlargement and discoloration, hepatocyte swelling, infiltration of inflammatory cells and formation of lipid vacuoles. Bioactive component analysis revealed that there were significant differences in the relative content of taurocholic acid, taurodeoxycholic acid and ursodeoxycholic acid among different types of animal bile. Interestingly, a unique component with molecular weight of 496.2738 Da, whose function has not yet been reported, was identified only in bear bile powder.
CONCLUSIONS
Different animal bile powders had varying therapeutic effect against lipid metabolism disorders induced by high-fat diet, and bear bile powder demonstrated the most effective benefits. Bioactive compositions were different in different types of animal bile with a novel compound identified only in bear bile powder.
Animals
;
Bile/metabolism*
;
Biomarkers/metabolism*
;
Body Weight
;
Cattle
;
Diet, High-Fat
;
Female
;
Lipid Metabolism
;
Lipid Metabolism Disorders/metabolism*
;
Lipids/analysis*
;
Liver/metabolism*
;
Powders
;
Rats
;
Rats, Sprague-Dawley
;
Swine
;
Taurodeoxycholic Acid/metabolism*
;
Ursidae/metabolism*
;
Ursodeoxycholic Acid/metabolism*

Result Analysis
Print
Save
E-mail