1.The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways.
Yan LI ; Jing-Ping GE ; Ke MA ; Yuan-Yuan YIN ; Juan HE ; Jian-Ping GU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):679-690
Deep venous thrombosis (DVT) poses a major challenge to public health worldwide. Endothelial cell injury evokes inflammatory and oxidative responses that contribute to thrombus formation. Tea polyphenol (TP) in the form of epigallocatechin-3-gallate (EGCG) has anti-inflammatory and oxidative effect that may ameliorate DVT. However, the precise mechanism remains incompletely understood. The current study was designed to investigate the anti-DVT mechanism of EGCG in combination with warfarin (an oral anticoagulant). Rabbits were randomly divided into five groups. A DVT model of rats was established through ligation of the inferior vena cava (IVC) and left common iliac vein, and the animals were orally administered with EGCG, warfarin, or vehicle for seven days. In vitro studies included pretreatment of human umbilical vein endothelial cells (HUVECs) with different concentrations of EGCG for 2 h before exposure to hydrogen peroxide. Thrombus weight and length were examined. Histopathological changes were observed by hematoxylin-eosin staining. Blood samples were collected for detecting coagulation function, including thrombin and prothrombin times, activated partial thromboplastin time, and fibrinogen levels. Protein expression in thrombosed IVCs and HUVECs was evaluated by Western blot, immunohistochemical analysis, and/or immunofluorescence staining. RT-qPCR was used to determine the levels of AGTR-1 and VEGF mRNA in IVCs and HUVECs. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis and ROS generation was assessed by 2',7'-dichlorofluorescein diacetate reagent. In vitro and invivo studies showed that EGCG combined with warfarin significantly reduced thrombus weight and length, and apoptosis in HUVECs. Our findings indicated that the combination of EGCG and warfarin protects HUVECs from oxidative stress and prevents apoptosis. However, HIF-1α silencing weakened these effects, which indicated that HIF-1α may participate in DVT. Furthermore, HIF-1α silencing significantly up-regulated cell apoptosis and ROS generation, and enhanced VEGF expression and the activation of the PI3K/AKT and ERK1/2 signaling pathways. In conclusion, our results indicate that EGCG combined with warfarin modifies HIF-1α and VEGF to prevent DVT in rabbits through anti-inflammation via the PI3K/AKT and ERK1/2 signaling pathways.
Animals
;
Anticoagulants/pharmacology*
;
Catechin/analogs & derivatives*
;
Eosine Yellowish-(YS)/pharmacology*
;
Fibrinogen/pharmacology*
;
Hematoxylin/pharmacology*
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hydrogen Peroxide/pharmacology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
MAP Kinase Signaling System
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polyphenols/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger
;
Rabbits
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
;
Tea
;
Thrombin/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Venous Thrombosis/pathology*
;
Warfarin/pharmacology*
3.Protective Effect of Procyanidin B2 on Acute Liver Injury Induced by Aflatoxin B in Rats.
Zhi Jie DENG ; Jing Fang ZHAO ; Feng HUANG ; Gui Li SUN ; Wei GAO ; Li LU ; De Qiang XIAO
Biomedical and Environmental Sciences 2020;33(4):238-247
Objective:
This study aimed to explore the protective effect of procyanidin B2 (PCB2) on acute liver injury induced by aflatoxin B (AFB ) in rats.
Methods:
Forty Sprague Dawley rats were randomly divided into control, AFB , AFB + PCB2, and PCB2 groups. The latter two groups were administrated PCB2 intragastrically (30 mg/kg body weight) for 7 d, whereas the control and AFB groups were given the same dose of double distilled water intragastrically. On the sixth day of treatment, the AFB and AFB + PCB2 groups were intraperitoneally injected with AFB (2 mg/kg). The control and PCB2 groups were intraperitoneally administered the same dose of dimethyl sulfoxide (DMSO). On the eighth day, all rats were euthanized: serum and liver tissue were isolated for further examination. Hepatic histological features were assessed by hematoxylin and eosin-stained sections. Weight, organ coefficient (liver, spleen, and kidney), liver function (serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, and direct bilirubin), oxidative index (catalase, glutathione, superoxide dismutase, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine), inflammation factor [hepatic interleukin-6 (IL-6) mRNA expression and serum IL-6], and bcl-2/bax ratio were measured.
Results:
AFB significantly caused hepatic histopathological damage, abnormal liver function, oxidative stress, inflammation, and bcl-2/bax ratio reduction compared with DMSO-treated controls. Our results indicate that PCB2 treatment can partially reverse the adverse liver conditions induced by AFB .
Conclusion
Our findings indicate that PCB2 exhibits a protective effect on acute liver injury induced by AFB .
Aflatoxin B1
;
toxicity
;
Animals
;
Biflavonoids
;
administration & dosage
;
pharmacology
;
Catechin
;
administration & dosage
;
pharmacology
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
etiology
;
Male
;
Poisons
;
toxicity
;
Proanthocyanidins
;
administration & dosage
;
pharmacology
;
Protective Agents
;
administration & dosage
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
4.The effect of procyanidin on periprosthetic osteolysis caused by TCP wear particles in the mouse calvaria and its mechanism.
Kun LIN ; Jia-Hao CHEN ; Ze-Hao FANG ; Cheng-Long YE ; Chao-Jie HAN ; Ming YAN ; Jian FANG ; Yun ZHANG
Chinese Journal of Applied Physiology 2019;35(3):250-255
OBJECTIVE:
To investigate the protective effects of procyanidin on periprosthetic osteolysis caused by tricalcium phosphate (TCP) wear particles in the mouse calvaria and its mechanism.
METHODS:
Forty-eight male ICR mice were randomly divided into sham group, TCP group, and procyanidin (0.2 mg/kg, 1 mg/kg, 5 mg/kg)-treated group (n=12). A periprosthetic osteolysis model in the mouse calvaria was established by implanting 30 mg of TCP wear particles onto the surface of bilateral parietal bones following removal of the periosteum. On the 2 day post-operation, procyanidin (1 mg/kg, 5 mg/kg) was locally injected to the calvaria under the periosteum every other day. After 2 weeks, all the mice were sacrificed to collect the blood samples and the calvaria. Periprosthetic osteolysis and osteoclastogenesis in the mouse calvaria were observed by tartrate resistant acid phosphatase (TRAP) staining and HE staining. mRNA levels of TRAP, capthesin K, c-Fos and NFATc1 in the periprosthestic bone tissue were examined by real-time fluorescence quantitative PCR. Serum contents of total anti-oxidation capacity (T-AOC) and MDA, and superoxide dismutase (SOD) activity were determined by chemical colorimetry. Protein expressions of autophagic biomarkers such as Beclin-1 and LC-3 in periprosthetic bone tissue of the calvaria were examined by Western blot.
RESULTS:
Compared with sham group, periprosthetic osteolysis, osteoclastogenesis, mRNA levels of TRAP, capthesin K, c-Fos and NFATc1, and serum MDA content were increased significantly in the TCP group (P<0.05), whereas serum T-AOC level and SOD activity were decreased. The protein expressions of Beclin-1 and LC-3, and the conversion of LC3-II from LC3-I were both up-regulated markedly in the mouse calvaria of TCP group (P<0.05). Compared with TCP group, osteolysis, osteoclastogenesis, mRNA levels of TRAP, capthesin K, c-Fos and NFATc1 and serum MDA content were decreased obviously in the procyanidine group (P<0.05), serum T-AOC level and SOD activity were increased, the expressions of Beclin-1 and LC-3, and the conversion of LC3-II from LC3-I were down-regulated obviously in the mouse calvaria of procyanidin group (P<0.05).
CONCLUSION
Procyanidin has a protective effect of periprosthetic osteolysis caused by TCP wear particles in the mouse calvaia, its mechanism may be mediated by inhibition of oxidative stress and autophagy.
Animals
;
Autophagy
;
Biflavonoids
;
pharmacology
;
Calcium Phosphates
;
adverse effects
;
Catechin
;
pharmacology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Osteolysis
;
Oxidative Stress
;
Proanthocyanidins
;
pharmacology
;
Prostheses and Implants
;
adverse effects
;
Random Allocation
;
Skull
5.Effect of EGCG on oxidative stress and Nrf2/HO-1 pathway in neurons exposed to oxygen-glucose deprivation/reperfusion.
Fang HE ; Yi ZHANG ; Shang CHEN ; Bei YE ; Jianzhen CHEN ; Chang LI
Journal of Central South University(Medical Sciences) 2018;43(10):1041-1047
To explore the effect of epigallocatechin gallate (EGCG) on oxidative stress and Nrf2/HO-1 pathway in neurons subjected to oxygen-glucose deprivation/reperfusion (OGD/R).
Methods: Primary cultured cerebral cortical neurons were prepared from Sprague-Dawley rats, and the OGD/R cell model was established. After pretreatment with EGCG at different concentrations (12.5, 25.0, 50.0 or 100.0 μmol/L), the neurons were subjected to OGD/R. The cell viability, reactive oxygen species (ROS) level and malondialdehyde (MDA) content were assessed after reperfusion. The superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were measured. The expression of Nrf2 protein in nucleus, HO-1 mRNA and protein were detected.
Results: OGD/R treatment reduced the cell viability, elevated ROS level and MDA content, decreased SOD and GSH-Px activities. The expression of Nrf2 protein in nucleus, HO-1 mRNA and protein were increased (P<0.01). Pretreatment with EGCG promoted the survival of neurons exposed to OGD/R, decreased ROS level and MDA content while increased SOD and GSH-Px activities. The levels of Nrf2 protein in nucleus, HO-1 mRNA and protein were upregulated (P<0.01).
Conclusion: EGCG can reduce the oxidative stress of neurons subjected to OGD/R, which may be related to activation of Nrf2/HO-1 signal pathway and enhancement of the antioxidant ability of neurons.
Animals
;
Catechin
;
analogs & derivatives
;
pharmacology
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Gene Expression Regulation
;
drug effects
;
Glucose
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
genetics
;
metabolism
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Oxygen
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
prevention & control
6.Epigallocatechin-3-gallate Modulates MicroRNA Expression Profiles in Human Nasopharyngeal Carcinoma CNE2 Cells.
Bin-Bin LI ; Guo-Liang HUANG ; Hua-Hui LI ; Xia KONG ; Zhi-Wei HE ;
Chinese Medical Journal 2017;130(1):93-99
BACKGROUNDEpigallocatechin-3-gallate (EGCG) has exhibited antitumor properties in several types of cancers, including nasopharyngeal carcinoma (NPC), but the molecular mechanisms underlying this function remain incompletely understood. The aim of the present study was to characterize the global impact of EGCG on the expression of microRNAs (miRNAs) in NPC cells.
METHODSUsing microarray analysis, the alterations of miRNA expression profiles were investigated in EGCG-treated CNE2 cells. Furthermore, the target genes and signaling pathways regulated by EGCG-specific miRNAs were identified using target prediction program and gene ontology analysis.
RESULTSA total of 14 miRNAs exhibited >2-fold expression changes in a dose-dependent manner after treatment with 20 μmol/L and 40 μmol/L EGCG. Totally 43, 49, and 52 target genes from these differentially expressed miRNAs were associated with the apoptosis, cell cycle regulation, and cell proliferation, respectively. A total of 66 signaling pathways, primarily involved in cancer development and lipid and glucose metabolism, were shown to be regulated by EGCG-specific miRNAs.
CONCLUSIONEGCG induces considerable alterations of miRNA expression profiles in CNE2 cells, which provides mechanistic insights into cellular responses and antitumor activity mediated by EGCG.
Antineoplastic Agents ; pharmacology ; Carcinoma ; Catechin ; analogs & derivatives ; pharmacology ; Cell Line, Tumor ; Computational Biology ; Gene Expression ; drug effects ; genetics ; Humans ; MicroRNAs ; genetics ; metabolism ; Nasopharyngeal Neoplasms ; genetics ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; drug effects ; genetics
7.Biomodifying effect of epigallocatechin-3-gallate on dentine substrate splicing surface.
Qiurong SUN ; Lisha GU ; Shiyu WU ; Zihua HUANG ; Sui MAI
Chinese Journal of Stomatology 2016;51(3):148-153
OBJECTIVETo investigate the effect of epigallocatechin-3-gallate (EGCG) on biomodification of demineralized dentine substrate, in its permeability, hydrophobicity, and inhibition ability to collagen enzymatic degradation.
METHODSThe dentine substrates were treated with simulated pulpal pressure created by mixtures of 0.02%, 0.1% EGCG/bovine serum albumin (BSA) in acidic environment (pH4.4) for 48 h. A fluid-transport model was used to measure the fluid permeability through demineralized dentine substrate. Positive replicas of dentine substrate were fabricated before and after being subjected to acidic environment for scanning electron microscope (SEM) examination. The blank group contained no EGCG and the positive group were treated with Gluma desensitizer. Static contact angle measurements on demineralized dentin and 0.1% EGCG primed dentin were performed by contact angle analyzer. The priming time were 60 s, 120 s, 0.5 h, 1 h. Dentine specimens bonded with Adper single bond 2 were subjected to 100 mg/L collagenase and observed under SEM. Resin-bonded specimens (with 0.02%, 0.1%, 0.5% EGCG priming, or without EGCG priming) were created for micro-tensile bond strength evaluation (MTBS). Resin-bonded specimens after thermol cycling were created for MTBS evaluation.
RESULTSThe fluid permeability in the blank control group increased ([151.3±22.3]%), the fluid permeability in 0.1% EGCG/BSA group decreased ([23.7±6.3]%). Compared to the blank control group, the contact angle of 120 s, 0.5 h, 1 h groups increased by 31.0%, 53.5%, 57.8% in deep dentin and 37.4%, 59.3%, 62.4% in shallow dentin. The SEM examination showed that 0.1% and 0.5% EGCG priming for 120 s significantly increased dentin collagen's resistance to collagenase. The immediate MTBS of 0.1% and 0.5% EGCG groups were (29.4±4.8) and (19.8± 4.9) MPa. After thermol cycling, the MTBS of 0.1% and 0.5% EGCG groups were (19.9±5.1) and (15.3± 6.3) MPa.
CONCLUSIONSUnder acidic environment (pH4.4), the 0.1% EGCG can reduce dentine permeability under acidic environment. The 0.1% EGCG can increase hydrophobicity of dentin substrate, and strengthen dentin substrate's resistance to collagenase hydrolysis, thus increased the resin-dentin bonding durability.
Acid Etching, Dental ; Catechin ; analogs & derivatives ; pharmacology ; Collagen ; chemistry ; drug effects ; Collagenases ; pharmacology ; Composite Resins ; Dental Bonding ; Dental Cements ; Dental Pulp ; Dentin ; chemistry ; drug effects ; Dentin Permeability ; drug effects ; Dentin-Bonding Agents ; Glutaral ; pharmacology ; Hydrogen-Ion Concentration ; Hydrolysis ; Methacrylates ; pharmacology ; Microscopy, Electron, Scanning ; Pressure ; Resin Cements ; Serum Albumin, Bovine ; pharmacology ; Tensile Strength ; Time Factors
8.Role and mechanism research on reversal of 5-fluorouracil resistance by epigallocatechin gallate in gastric cancer drug-resistance cells lines SGC-7901/5-FU.
Hongsheng TANG ; Xiangliang ZHANG ; Shuzhong CUI ; Jin WANG ; Qiang RUAN ; Yonghong HUANG ; Dinghua YANG
Chinese Journal of Gastrointestinal Surgery 2016;19(10):1170-1175
To study the role and molecular mechanism of epigallocatechin gallate (EGCG) in reversing drug-resistance to 5-fluorouracil (5-FU) in gastric cancer drug-resistant cell line SGC-7901/5-FU.
METHODSDrug-resistance gastric cancer cell line (SGC-7901/5-FU) was established by high doses of repeated impact joint drug concentration increment methods. The cell viability of the parent cell line and the drug-resistance cell line were determined by standard MTT assay. Cell survival rate of drug-resistance was calculated by the formula [(Aof the treatment group / Aof the control group) × 100%]. Cell half inhibitory concentration (IC) and resistance index (RI) were calculated by the Graphpad prime 6.0 software(RI=ICvalue of drug-resistance cells / ICvalue of parent cells). The apoptosis rate of SGC-7901/5-FU cells was quantified by flow cytometry after staining with annexin-V and PI. Western blot was used to detect the protein expression of drug-resistance-related proteins (ABCG2, P-gp, MDR-1 and GST-π) and apoptosis-related proteins (PARP, Survivin, Bax and bcl-2).
RESULTSICvalue was significantly increased in drug-resistant cells compared with parental cells [(64.7±3.9) mg/L and (4.1±0.3) mg/L, respectively, t=26.46, P=0.000], and the RI was 15.6. Proliferation activity in the drug-resistant cells was higher than that in parental cells at different 5-FU concentrations (all P<0.05). In drug-resistant cells, the ICvalue of 5-FU combined with EGCG group obviously decreased compared with 5-FU group [(7.3±0.1) mg/L and (63.1±1.4) mg/L respectively, t=40.84, P=0.000], and the RI was 0.12. Proliferation activity in drug-resistant cells was significantly decreased after EGCG treatment at different 5-FU concentrations (all P<0.05). Cell apoptosis rates in control group, 5-FU group, EGCG group and 5-FU combined with EGCG group were (3.0±1.0)%, (7.0±1.3)%, (6.0±1.2)% and (18.0±1.4)%, while apoptosis rate in 5-FU combined with EGCG group was significantly higher than those of other 3 groups(F=129.5, P=0.000). Western blot revealed that after EGCG treatment, the expression levels of drug-resistance-related proteins (ABCG2, P-gp, MDR-1 and GST-π) in the drug-resistant cell line SGC-7901/5-FU decreased significantly; the expression levels of apoptosis marker protein PARP and pro-apoptotic protein Bax increased significantly; and the expression levels of anti-apoptotic protein Survivin and Bcl-2 decreased significantly (all P<0.05).
CONCLUSIONEGCG can reduce the resistance of gastric cancer resistant cell line SGC-7901/5-FU, whose role may be via the inhibition of the expression of drug-resistance-related proteins, and the elevation of the protein expression ratio of PARP/Survivin and Bax/Bcl-2.
Anticarcinogenic Agents ; pharmacology ; Apoptosis ; Apoptosis Regulatory Proteins ; Catechin ; analogs & derivatives ; pharmacology ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival ; Drug Resistance, Neoplasm ; Fluorouracil ; pharmacology ; Humans ; Stomach Neoplasms ; drug therapy ; pathology ; bcl-2-Associated X Protein
9.Anti-melanogenic effects of black, green, and white tea extracts on immortalized melanocytes.
Young Chul KIM ; So Young CHOI ; Eun Ye PARK
Journal of Veterinary Science 2015;16(2):135-143
Tea contains polyphenols and is one of the most popular beverages consumed worldwide. Because most tyrosinase inhibitors that regulate melanogenesis are phenol/catechol derivatives, this study investigated the inhibitory effects of Camellia sinensis water extracts (CSWEs), including black tea, green tea, and white tea extracts, on melanogenesis using immortalized melanocytes. CSWEs inhibited melanin accumulation and melanin synthesis along with tyrosinase activity in a concentration-dependent manner. These inhibitory effects were superior to those of arbutin, a well-known depigmenting agent. The anti-melanogenic activity of black (fermented) tea was higher than that of a predominant tea catecholamine, epigallocatechin gallate. CSWEs, especially black tea extract, decreased tyrosinase protein levels in a concentration-dependent manner. These results suggest that the anti-melanogenic effect of CSWEs is mediated by a decrease in both tyrosinase activity and protein expression, and may be augmented by fermentation. Thus, CSWEs could be useful skin-whitening agents in the cosmetic industry.
Animals
;
Catechin/analogs & derivatives/metabolism
;
Cell Line
;
Melanins/*metabolism
;
Melanocytes/enzymology/*metabolism
;
Mice
;
Monophenol Monooxygenase/*metabolism
;
Plant Extracts/*pharmacology
;
Plant Leaves/chemistry
;
Tea/*chemistry
10.Protective effects of epigallocatechin-3-gallate on intestinal ischemia reperfusion injury through enhanced activation of PI3K/Akt pathway in rats.
Xuan ZHANG ; Fan HE ; Jun YANG ; Zhi-Shui CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(3):378-383
Inflammation plays a critical role in intestinal ischemia reperfusion injury (IRI). Epigallocatechin-3-gallate (EGCG) has been demonstrated to possess anti-inflammatory effect. This study examined the effect of EGCG on intestinal IRI and explored the possible mechanisms. Male Wistar rats were randomly divided into three groups: sham-operated group (Sham), IRI control group (IRI) and IRI-EGCG group (EGCG). Rats in IRI-EGCG group were administered dissolved EGCG in drinking water (0.4 mg/mL) for 14 days prior to IRI induction. A rat model of intestinal IRI was established by ligating the superior mesenteric artery (SMA) for 30 min, followed by reperfusion for 1 h. Intestinal histology, pro-inflammatory cytokines and mediators were examined and the effect of EGCG on PI3K/Akt signalling was assessed. EGCG significantly alleviated the pathological changes of the intestine and suppressed the IRI-induced up-regulation of TNF-α, IL-1 and IL-6 mRNA and protein expression in the serum and intestine. The mechanism might be that EGCG enhanced the activation of PI3K/Akt signalling pathway. In conclusion, the administration of EGCG can significantly mitigate the acute intestinal IRI in rats by enhancing the activation of PI3K/Akt signalling pathway to suppress inflammatory response and might be a promising alternative for the prevention or treatment of intestinal IRI in the clinical practice.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
pharmacology
;
Catechin
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
Disease Models, Animal
;
Gene Expression Regulation
;
drug effects
;
Interleukin-1
;
genetics
;
metabolism
;
Interleukin-6
;
genetics
;
metabolism
;
Intestines
;
drug effects
;
pathology
;
Male
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Rats, Wistar
;
Reperfusion Injury
;
genetics
;
metabolism
;
prevention & control
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail