1.Effects of NLRP3-mediated pyroptosis on olfaction dysfunction in allergic rhinitis.
Fang Wei ZHOU ; Tian ZHANG ; Ying JIN ; Yi Fei MA ; Zhi Peng XIAN ; Zhi Min WU ; Guo Dong YU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):433-441
Objective: To explore the relationship between NLRP3-mediated pyroptosis and olfactory dysfunction (OD) in allergic rhinitis (AR), and to evaluate the therapeutic potential of CY-09, a selective NLRP3 inhibitor for OD. Methods: An AR mouse model was established with ovalbumin, and the olfactory function of AR mice was detected by the buried food pellet test. Mice with OD were intraperitoneally injected with CY-09 or saline. The activation of microglia and astrocytes in olfactory bulb was detected by immunohistochemistry. The expression level of pyroptosis associated protein was detected by Western blot. The level of pyroptosis associated proinflammatory factor mRNA was determined by real-time PCR. SPSS 24.0 software was used for statistical analysis. Results: After the test, ovalbumin successfully established AR mice model, in which 52.5% (21/40) of them showed OD. The number of activated microglia and astroglia in olfactory bulb tissue in OD group were more than those in non-OD group (all P<0.05). Compared with the control group, the expression of NLRP3, caspase-1 and gasdermin D (GSDMD) was significantly increased in the olfactory bulb of the OD group (all P<0.05). CY-09 could significantly reduce the level of NLRP3, caspase-1, GSDMD, IL-1β and IL-18 expression, and inhibite the activation of microglia and astrocytes in the olfactory bulb tissues (all P<0.05). Conclusion: NLRP3-mediated pyroptosis is closely related to the OD associated with AR. CY-09 could improve the olfactory function in AR mice, which may be related to blocking the NLRP3-mediated pyroptosis.
Animals
;
Caspases/therapeutic use*
;
Disease Models, Animal
;
Humans
;
Inflammasomes/therapeutic use*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Ovalbumin
;
Pyroptosis
;
Rhinitis, Allergic/drug therapy*
;
Smell
2.Anticancer effect of total annonaceous acetogenins on hepatocarcinoma.
Run-mei YANG ; Wen-min LI ; Wei-jun HU ; Wen-hua HUANG ; Chun-yan ZHU ; Jing-guang YU ; Xin ZHAO ; Da-yong CAI ; Nan-nan GAO
Chinese journal of integrative medicine 2015;21(9):682-688
OBJECTIVETo confirm the anticancer effect of total annonaceous acetogenins (TAAs) abstracted from Annona squamosa Linn. on human hepatocarcinoma.
METHODSThe inhibitory effect of TAAs was demonstrated in H22-bearing mice. The potency of TAAs was confirmed as its 50% inhibiting concentration (IC50) on Bel-7402 cell under Sulfur Rhodamine B staining. Both underlying mechanisms were explored as cellular apoptosis and cell cycle under flow cytometry. Mitochondrial and recipient apoptotic pathways were differentiated as mitochondrial membrane potential under flow cytometry and caspases activities under fluorescence analysis.
RESULTSThe inhibitory rate of TAAs in mice was 50.98% at 4 mg/kg dose. The IC50 of TAAs on Bel-7402 was 20.06 µg/mL (15.13-26.61µg/mL). Effective mechanisms of TAAs were confirmed as both of arresting cell cycle at G1 phase and inducing apoptosis dose- and time-dependently. Mitochondrial and recipient pathways involved in apoptotic actions of TAAs.
CONCLUSIONTAAs is effective for hepatocarcinoma, via inhibiting proliferation and inducing apoptosis.
Acetogenins ; chemistry ; pharmacology ; therapeutic use ; Animals ; Annona ; chemistry ; Antineoplastic Agents, Phytogenic ; chemistry ; pharmacology ; therapeutic use ; Apoptosis ; drug effects ; Carcinoma, Hepatocellular ; drug therapy ; enzymology ; pathology ; Caspases ; metabolism ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Chromatography, High Pressure Liquid ; Dose-Response Relationship, Drug ; Humans ; Liver Neoplasms ; drug therapy ; enzymology ; pathology ; Male ; Membrane Potential, Mitochondrial ; drug effects ; Mice ; Organ Specificity ; drug effects ; Spleen ; drug effects ; Thymus Gland ; drug effects ; Xenograft Model Antitumor Assays
3.Bear bile powder (熊胆粉) induces apoptosis of human hepatocellular carcinoma cells via mitochondrion-dependent pathway.
Jin-yan ZHAO ; Zhi-hong CHEN ; Wei LIN ; Xiao-yong ZHONG ; Xu-zheng CHEN ; Jun PENG ; Zhen-feng HONG
Chinese journal of integrative medicine 2014;20(2):123-129
OBJECTIVETo evaluate the effect of Bear Bile Powder(, BBP) on the growth and apoptosis of HepG2 human hepatocellular carcinoma cells, and investigate the possible molecular mechanisms mediating its anti-cancer activity.
METHODSHepG2 cells were treated with 0.4-1.0 mg/mL of BBP for 24, 48 and 72 h. The viability of HePG2 cells was determined by MTT assay. Cellular morphology was observed via phase-contrast microscopy. Fluorescence-activated cell sorting analysis with Annexin-V/propidium idodide and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazol-carbocyanine iodide (JC-1) staining was performed to determine cell apoptosis and the loss of mitochondrial membrane potential, respectively. Activation of caspase-9 and -3 was evaluated by a colorimetric assay.
RESULTSThe treatment with 0.4-1 mg/mL of BBP for 24, 48, or 72 h respectively reduced cell viability significantly by 7%-60%, 20%-90% or 25%-98%, compared with the untreated control cells (P<0.01). In addition, BBP treatment induced morphological changes in HepG2 cells. Furthermore, after treated with 0, 0.4, 0.6, 0.8 and 1.0 mg/mL of BBP, apoptosis cells (including early and late apoptotic cells) were 18.0%±1.3%, 34.9%±2.2%, 33.9%±2.8%, 37.4%±2.8% and 46.0%±2.5%, respectively (P<0.05); and the percentage of cells with reduced JC-1 red fluorescence were 6.6%±0.8%, 8.5%±0.8%, 13.5%±1.6%, 17.6%±2.3% and 46.7%±3.6%, respectively (P<0.01). Finally, BBP treatment significantly and dose-dependently induced activation of both caspase-9 and caspase-3 in HepG2 cells (P<0.05).
CONCLUSIONSBBP could inhibit the growth of HepG2 hepatocellular cancer cells through mitochondrion-mediated apoptosis, which may, in part, explain its anti-cancer activity. BBP may be a potential novel therapeutic agent for the treatment of hepatocellular carcinoma.
Animals ; Apoptosis ; drug effects ; Bile ; Carcinoma, Hepatocellular ; drug therapy ; pathology ; Caspases ; metabolism ; Cell Proliferation ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Hep G2 Cells ; Humans ; Liver Neoplasms ; drug therapy ; pathology ; Membrane Potential, Mitochondrial ; drug effects ; Mitochondria ; drug effects ; metabolism ; Signal Transduction ; drug effects ; Ursidae
4.Mitochondria-mediated apoptosis in mammals.
Shunbin XIONG ; Tianyang MU ; Guowen WANG ; Xuejun JIANG
Protein & Cell 2014;5(10):737-749
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.
Animals
;
Antineoplastic Agents
;
pharmacology
;
therapeutic use
;
Apoptosis
;
drug effects
;
Caspases
;
metabolism
;
Cytochromes c
;
metabolism
;
Humans
;
Inhibitor of Apoptosis Proteins
;
antagonists & inhibitors
;
metabolism
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
5.Disruption of Microtubules Sensitizes the DNA Damage-induced Apoptosis Through Inhibiting Nuclear Factor kappaB (NF-kappaB) DNA-binding Activity.
Hyunji LEE ; Juhee JEON ; Young Sue RYU ; Jae Eun JEONG ; Sanghee SHIN ; Tiejun ZHANG ; Seong Wook KANG ; Jang Hee HONG ; Gang Min HUR
Journal of Korean Medical Science 2010;25(11):1574-1581
The massive reorganization of microtubule network involves in transcriptional regulation of several genes by controlling transcriptional factor, nuclear factor-kappa B (NF-kappaB) activity. The exact molecular mechanism by which microtubule rearrangement leads to NF-kappaB activation largely remains to be identified. However microtubule disrupting agents may possibly act in synergy or antagonism against apoptotic cell death in response to conventional chemotherapy targeting DNA damage such as adriamycin or comptothecin in cancer cells. Interestingly pretreatment of microtubule disrupting agents (colchicine, vinblastine and nocodazole) was observed to lead to paradoxical suppression of DNA damage-induced NF-kappaB binding activity, even though these could enhance NF-kappaB signaling in the absence of other stimuli. Moreover this suppressed NF-kappaB binding activity subsequently resulted in synergic apoptotic response, as evident by the combination with Adr and low doses of microtubule disrupting agents was able to potentiate the cytotoxic action through caspase-dependent pathway. Taken together, these results suggested that inhibition of microtubule network chemosensitizes the cancer cells to die by apoptosis through suppressing NF-kappaB DNA binding activity. Therefore, our study provided a possible anti-cancer mechanism of microtubule disrupting agent to overcome resistance against to chemotherapy such as DNA damaging agent.
Animals
;
Antibiotics, Antineoplastic/therapeutic use
;
*Apoptosis
;
Caspases/metabolism
;
Cell Line
;
Colchicine/pharmacology
;
DNA/metabolism
;
*DNA Damage
;
Doxorubicin/therapeutic use
;
Humans
;
Mice
;
Microtubules/chemistry/*drug effects/metabolism
;
NF-kappa B/antagonists & inhibitors/*metabolism
;
Neoplasms/drug therapy
;
Nocodazole/pharmacology
;
Protein Binding
;
Signal Transduction
;
Tubulin Modulators/*pharmacology
;
Vinblastine/pharmacology
6.Targeting apoptosis signaling pathways in cancer therapy.
Liang CHENG ; Xi WANG ; Jie ZHANG ; Shao-bo ZHANG ; Su-qin ZHENG ; Jie ZHENG
Chinese Journal of Pathology 2009;38(9):639-642
Antineoplastic Agents
;
therapeutic use
;
Apoptosis
;
drug effects
;
Caspases
;
metabolism
;
physiology
;
Enzyme Activation
;
Fas Ligand Protein
;
metabolism
;
Humans
;
NF-kappa B
;
metabolism
;
Neoplasms
;
metabolism
;
therapy
;
Neovascularization, Pathologic
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Signal Transduction
7.Pinacidil reduces neuronal apoptosis following cerebral ischemia-reperfusion in rats through both mitochondrial and death-receptor signal pathways.
Hong ZHANG ; Li-Chun SONG ; Yan-Yan LIU ; Ying MA ; Yong-Li LU
Neuroscience Bulletin 2007;23(3):145-150
OBJECTIVETo investigate effect of pinacidil, an ATP sensitive potassium channel (K(ATP)) opener, on the neuronal apoptosis and its signaling transduction mechanism following focal cerebral ischemia-reperfusion in rats.
METHODSOne hundred male Wistar rats were randomly divided into four groups: A, sham-operated group; B, ischemia-reperfusion group; C, K(ATP) opener treatment group; and D, K(ATP) opener and blocker treatment group. The middle cerebral artery occlusion (MCAO) model was established by using the intraluminal suture occlusion method, neuronal apoptosis was determined by TUNEL staining, and expressions of caspase-8, caspase-9 and caspase-3 mRNA were detected by in situ hybridization.
RESULTS(1) The numbers of apoptotic neurons at 12 h, 24 h, 48 h, and 72 h were significantly less in group C than in groups B and D (P< 0.01 or P< 0.05); and there was no difference between groups B and D at all time points (P> 0.05). (2) The expressions of caspase-3 mRNA and caspase-8 mRNA at all times and the expressions of caspase-9 mRNA at 12 h, 24 h, 48 h, 72 h were significantly lower in group C than in groups B and D (P< 0.01 or P< 0.05); and there were no differences between groups B and D at all time points (P> 0.05).
CONCLUSIONSK(ATP) opener can significantly decrease the neuronal apoptosis and the expressions of caspase-3, caspase-8 and caspase-9 mRNAs following cerebral ischemia-reperfusion. The neuronal apoptosis may be decreased by the inhibition of both mitochondrial and death-receptor signal pathways.
Animals ; Antihypertensive Agents ; therapeutic use ; Apoptosis ; drug effects ; Brain Ischemia ; drug therapy ; Caspases ; metabolism ; Gene Expression Regulation ; drug effects ; In Situ Nick-End Labeling ; Male ; Neurons ; drug effects ; Pinacidil ; therapeutic use ; RNA, Messenger ; metabolism ; Rats ; Rats, Wistar ; Reperfusion Injury ; drug therapy ; Time Factors
8.Delay of Photoreceptor Cell Degeneration in rd Mice by Systemically Administered Phenyl-N-tert-butylnitrone.
Jin Hyoung KIM ; Jeong Hun KIM ; Young Suk YU ; Seon Mi JEONG ; Kyu Won KIM
Korean Journal of Ophthalmology 2005;19(4):288-292
PURPOSE: To study the effect of systemic administration of phenyl-N-tert-butylnitrone (PBN) on the degeneration of photoreceptor cells in rd mice. METHODS: PBN was injected intraperitoneally into FVB/rd mice on postnatal days (P) 5 to 14 (group A), and P10 to 18 (group B). At days P14, 16, 18, 20 and 27, morphological changes and apoptosis were analyzed by staining with hematoxylin and eosin or DAPI. The effect of PBN on apoptosis was analyzed in retinal pigment epithelial (RPE) cells by the measurement of caspase-3 activity. RESULTS: In control and group B mice, the outer nuclear layer (ONL) of the retina was composed of 8-10 rows at P12, and rapidly decreased to one row at P18. In group A mice, the ONL was preserved with 5-7 rows at P18, and decreased to one row at P22. PBN inhibited caspase-3 activity in cultured RPE cells. CONCLUSIONS: PBN delayed, but did not block, the degeneration of photoreceptor cells in rd mice. PBN may exert its inhibitory effect during the early phase of photoreceptor cell degeneration.
Retinal Degeneration/*drug therapy/metabolism/pathology
;
Pigment Epithelium of Eye/drug effects/metabolism/pathology
;
Photoreceptors, Vertebrate/drug effects/metabolism/*pathology
;
Nitrogen Oxides/*administration & dosage/pharmacokinetics/therapeutic use
;
Neuroprotective Agents/*administration & dosage/pharmacokinetics/therapeutic use
;
Mice
;
Male
;
Injections, Intraperitoneal
;
Free Radical Scavengers/*administration & dosage/pharmacokinetics/therapeutic use
;
Follow-Up Studies
;
Female
;
Enzyme Precursors/metabolism
;
Disease Models, Animal
;
Cells, Cultured
;
Caspases/metabolism
;
Caspase 3
;
Apoptosis/drug effects
;
Animals
9.Enhancement of radiosensitivity by combined ceramide and dimethylsphingosine treatment in lung cancer cells.
Hye Won PARK ; Jie Young SONG ; Ki Sung KIM ; Youngsoo HAN ; Chan Wha KIM ; Seh Yoon YI ; Yeon Sook YUN
Experimental & Molecular Medicine 2004;36(5):411-419
Ceramide generated from sphingomyelin in response to ionizing radiation has been implicated as a second messenger to induce cellular proapoptotic signals. Both ceramide and its metabolic inhibitor, N, N-dimethyl-D-erythro-sphingosine (DMS), might lead to sustained ceramide accumulation in cells more efficiently, thereby sensitizing them to gamma-radiation-induced cell death. To delineate this problem, the clonogenic survival of Lewis lung carcinoma (LLC) cells was evaluated following exposure to radiation together with or without C2-ceramide, DMS, or both. The treatment of ceramide/DMS synergistically decreased the survival of the irradiated cells compared with treatment with ceramide or DMS alone. Ceramide/DMS-treated cells displayed several apoptotic features after gamma-irradiation, including increased sub G1 population, TUNEL-positive fraction, and poly-(ADP-ribose) polymerase (PARP) cleavage. We also observed ceramide/ DMS induced disruption of mitochondrial membrane potential (MMP) and activation of caspase- 9 and -3 in a radiation-dose-dependent manner. Furthermore, pretreatment of LLC cells with ceramide/DMS not only increased the protein expression level of Bax, but also decreased Bcl-2 after gamma-irradiation. Taken together, the present study indicates that the radiosensitizing activity of ceramide/DMS on LLC cells most likely reflects the dominance of pro-apoptotic signals related to the mitochondria-dependent pathway.
Animals
;
Apoptosis/drug effects
;
Carcinoma, Lewis Lung/metabolism/*radiotherapy
;
Caspases/metabolism
;
Cell Line, Tumor
;
Cell Survival/drug effects/radiation effects
;
Gene Expression
;
Lung Neoplasms/metabolism/*radiotherapy
;
Mice
;
Proto-Oncogene Proteins/genetics/metabolism
;
Proto-Oncogene Proteins c-bcl-2/genetics/metabolism
;
Radiation Tolerance
;
*Radiation-Sensitizing Agents
;
Research Support, Non-U.S. Gov't
;
Sphingosine/*analogs & derivatives/pharmacology/*therapeutic use
10.Therapeutic effect of bFGF on retina ischemia-reperfusion injury.
Ying-jun NIU ; Yan-song ZHAO ; Yun-xia GAO ; Zhan-yu ZHOU ; Hong-yun WANG ; Chun-yan YUAN
Chinese Medical Journal 2004;117(2):252-257
BACKGROUNDBasic fibroblast growth factor (bFGF) plays important roles in retina degeneration, light injury, mechanical injury, especially in retina ischemia-reperfusion injury (RIRI). This study was to investigate the therapeutical effect of bFGF on RIRI and its mechanisms.
METHODSExperimental RIRI was induced by increasing intraocular pressure (IOP) in the eyes of 48 rats. These rats were divided into normal control, ischemia-reperfusion and bFGF-treated groups. Histological and ultrastructural changes of in the retina of different groups were observed, and the number of retinal ganglion cells (RGCs) was quantitatively analyzed under microscopy. Apoptotic cells were detected using the TdT-dUTP terminal nick-end labeling (TUNEL) method. The expression of caspase-3 was determined by streptavidin peroxidase (SP) immunohistochemistry. Atomic absorption spectrum method was used to evaluate the intracellular calcium changes.
RESULTSAt the early stage of retinal ischemia-reperfusion injury, retina edema in the treated group was significantly eliminated compared with the untreated ischemic animals. RGCs in the bFGF-treated group was more than those in the untreated ischemic group during the post-reperfusion stages. In ischemic group, apoptotic cells could be found at 6th hour after reperfusion and reached the peak at 24 hours. At 72nd hour no apoptotic cells could be found.The changes in caspase-3 expression had a similar manner. The intracellular calcium of rat retina began to increase at 1st hour, reached the peak at 24 hours, and began to decrease at 72 hours. The change of the three markers in the treatment group showed a similar pattern, but they were all relatively less obvious.
CONCLUSIONApoptosis may play a vital role in RIRI. bFGF may has therapeutical effects on RIRI by inhibiting the increase of intracellular calcium and caspase-3 expression.
Animals ; Apoptosis ; Calcium ; analysis ; Caspase 3 ; Caspases ; analysis ; Fibroblast Growth Factor 2 ; therapeutic use ; Rats ; Rats, Wistar ; Reperfusion Injury ; drug therapy ; metabolism ; pathology ; Retinal Diseases ; drug therapy ; metabolism ; pathology

Result Analysis
Print
Save
E-mail