1.Effect of "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on reproductive function in mice with asthenozoospermia based on mitochondrial apoptosis.
Jianheng HAO ; Boya CHANG ; Jia REN ; Zhen GAO ; Yanlin ZHANG ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(1):71-81
OBJECTIVE:
To observe the effects of the "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on key regulatory factors during mitochondrial apoptosis of testicular tissue in asthenozoospermia mice, and explore the potential mechanism of the protective effect of acupuncture on reproductive function.
METHODS:
Thirty C57BL/6 male mice were randomly divided into a blank group, a model group and an acupuncture group, 10 mice in each group. In the model and the acupuncture groups, the intraperitoneal injection of cyclophosphamide (30 mg•kg-1•d-1) was delivered for 7 days to prepare the asthenozoospermia model. After the success of modeling, the modeled mice in the acupuncture group were intervened with "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture, once daily and the needles were retained for 20 min. The duration of the intervention was 2 weeks. The general condition of each mouse was observed, and the body mass was recorded before modeling, after modeling and after intervention completion. After intervention, the testicular mass was recorded and the weight coefficient was calculated, and the mouse sperm quality was examined; the serum contents of testosterone (T), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were detected using ELISA, the morphology of testicular tissue was observed using HE, the mitochondrial ultra-microstructure of testicular tissue was observed under transmission electrone microscopy, the mitochondrial membrane potential level of testicular tissue was detected using JC-1 staining, the positive rate of apoptosis cell of testicular tissue was observed using TUNEL; and the mRNA and protein expression of b-cell lymphocytoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), cytochrome c (Cyt C), apoptotic protease-activating factor1 (Apaf-1), Caspase-9 and Caspase-3 of testicular tissue was detected using real-time quantitative fluorescence PCR and Western blot methods separately; and the positive expression of Cleaved Caspase-3 of the testicular tissue was detected using immunohistochemistry.
RESULTS:
Compared with the blank group, the mice were in listless spirits, had shaggy hairs, the reduced appetite and movement, and weight loss in the model group (P<0.01); the testicular mass and the weight coefficient decreased (P<0.01); the total number of sperms, sperm motility, and sperm viability were declined (P<0.01); while the levels of serum T, FSH, and LH were dropped (P<0.01). The morphology of seminiferous tubules in testicular tissue was abnormal, the number of spermatogenic cells and the number of mitochondria decreased, the inner mitochondrial crest was fractured and lost, and vacuoles appeared. The level of mitochondrial membrane potential was reduced (P<0.01); and the positive rate of apoptosis cell in testicular tissue increased (P<0.01). The mRNA and protein expression of Bax, Cyt C, Apaf-1, Caspase-9 and Caspase-3 was elevated (P<0.01, P<0.05), the mRNA and protein expression of Bcl-2 was dropped (P<0.01), and the average absorbance value of Cleaved Caspase-3 increased (P<0.01). When compared with the model group, in the acupuncture group, the general condition of mice was improved, the testicular mass and the weight coefficient elevated (P<0.01); the total number of sperms, sperm motility, and sperm viability increased (P<0.01); while the levels of serum T, FSH, and LH rose (P<0.01). The pathological morphology of testicular tissue and the inner mitochondrial ultra-microstructure were ameliorated, the level of mitochondrial membrane potential was elevated (P<0.01); the positive rate of apoptosis cell was reduced (P<0.01). The mRNA and protein expression of Bax, Cyt C, Apaf-1, Caspase-9 and Caspase-3 was dropped (P<0.01, P<0.05), the mRNA and protein expression of Bcl-2 elevated (P<0.05), and the average absorbance value of Cleaved Caspase-3 declined (P<0.01).
CONCLUSION
"Zhibian" (BL54)-toward- "Shuidao" (ST28) acupuncture may ameliorate mouse reproductive function by inhibiting mitochondrial apoptosis pathway, alleviating testicular tissue damage in the asthenospermia mice induced by cyclophosphamide.
Animals
;
Male
;
Mice
;
Apoptosis
;
Acupuncture Therapy
;
Mitochondria/metabolism*
;
Asthenozoospermia/genetics*
;
Humans
;
Testis/metabolism*
;
Mice, Inbred C57BL
;
Spermatozoa/metabolism*
;
Acupuncture Points
;
Sperm Motility
;
Testosterone/blood*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Caspase 3/genetics*
;
Follicle Stimulating Hormone/blood*
;
Reproduction
;
Cytochromes c/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Apoptotic Protease-Activating Factor 1/genetics*
2.Effects of Huayu Tongluo moxibustion on learning and memory ability and neuronal injury in the hippocampal CA1 region in vascular dementia rats via the NLRP3/Caspase-1/GSDMD signaling pathway.
Shuaihui QIU ; Qiqi YANG ; Jun YANG ; Kepo WANG ; Xinhua ZHOU ; Weiran LI ; Peiyun WANG ; Fei LI
Chinese Acupuncture & Moxibustion 2025;45(11):1591-1599
OBJECTIVE:
To observe the effect of Huayu Tongluo moxibustion on the NOD-like receptor protein 3 (NLRP3)/cysteine-aspartic acid protease-1 (Caspase-1)/gasdermin D (GSDMD) signaling pathway in rats with vascular dementia (VD), and to explore its mechanism in improving learning and memory ability and alleviating neuronal injury in the hippocampal CA1 region.
METHODS:
A total of 80 SPF-grade male Wistar rats were included. Three rats were excluded based on the Morris water maze test. From the remaining rats, 12 were randomly selected as the sham operation group. The rest were used to establish VD models via modified bilateral common carotid artery ligation. Thirty-six successfully modeled rats were randomly divided into a model group, a medication group, and a moxibustion group, with 12 rats in each group. The medication group was treated with nimodipine solution (12 mg/kg) via gavage. The moxibustion group was treated with Huayu Tongluo moxibustion. The suspended moxibustion was applied at Shenting (GV24) and Dazhui (GV14), and aconite cake-separated moxibustion was applied at Baihui (GV20), with each acupoint treated for 20 min. All treatments were administered once daily for 21 consecutive days. Before and after modeling, and after intervention, the Morris water maze test was used to assess cognitive function. After intervention, the activation and morphology of microglia in the hippocampal CA1 region were observed by immunofluorescence. Ultrastructure of hippocampal CA1 neurons was examined by transmission electron microscopy. Western blot was used to detect protein expression of NLRP3, apoptosis-associated speck-like protein (ASC), Caspase-1, GSDMD, and interleukin-1β (IL-1β) in the hippocampal CA1 region. ELISA was used to detect the content of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in the hippocampal CA1 region.
RESULTS:
Compared with the sham operation group, the model group showed longer mean escape latency (P<0.01) and fewer platform crossings (P<0.01); the microglial processes in the hippocampal CA1 region were thickened, cytoplasm was hypertrophic, and relative fluorescence intensity of ionized calcium-binding adapter molecule 1 (IBA-1) was increased (P<0.05); the neuronal ultrastructure in the CA1 region was severely damaged, rough endoplasmic reticulum was swollen, mitochondria were deformed and swollen, some cristae were ruptured or dissolved, showing vacuolar changes; the protein expression of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β, as well as levels of IL-6, IL-8, and TNF-α were significantly elevated (P<0.001). Compared with the model group, both the medication group and the moxibustion group showed shortened mean escape latency (P<0.01) and increased platform crossings (P<0.01); the microglial processes were thinner, and IBA-1 fluorescence intensity was decreased (P<0.05); the neuronal ultrastructure in the CA1 region was partially improved; the protein expression of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β, and levels of IL-6, IL-8, and TNF-α were significantly reduced (P<0.001). Compared with the medication group, the moxibustion group showed shortened mean escape latency (P<0.05) and more platform crossings (P<0.05); the IBA-1 fluorescence intensity was decreased (P<0.05); the neuronal ultrastructure in the CA1 region was improved; the protein expression of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β, as well as levels of IL-6, IL-8, and TNF-α, were significantly lower (P<0.001).
CONCLUSION
The Huayu Tongluo moxibustion could enhance learning and memory abilities in VD rats, inhibit excessive activation of microglia, and alleviate neuronal injury in the hippocampal CA1 region. Its mechanism may involve modulation of the NLRP3/Caspase-1/GSDMD signaling pathway, reduction of inflammatory responses.
Animals
;
Male
;
Dementia, Vascular/physiopathology*
;
Rats
;
Signal Transduction
;
Moxibustion
;
Rats, Wistar
;
CA1 Region, Hippocampal/injuries*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Caspase 1/genetics*
;
Memory
;
Humans
;
Neurons/metabolism*
;
Learning
3.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
4.Mechanism of immediate administration of Angong Niuhuang Pills in intervention of traumatic brain injury based on metabolomics and transcriptomics.
Xiao-Tong ZHU ; Liang-Liang TIAN ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2025;50(10):2750-2760
This study integrates metabolomics and transcriptomics to explore the immediate effects of Angong Niuhuang Pills(ANP) in intervening traumatic brain injury(TBI) in rats. A TBI model was successfully established in rats using the optimized Feeney free-fall impact technique. Rats were randomly divided into sham operation(sham) group, model(Mod) group, positive drug(piracetam) group, ANP low-dose(ANP-L) group, and ANP high-dose(ANP-H) group according to a random number table. Nissl staining and immunofluorescence were used to count the number of Nissl bodies and detect B-cell lymphoma-2(Bcl-2) gene, caspase-3, and tumor protein 53(TP53) expression in brain tissue, and enzyme-linked immunosorbent assay(ELISA) was used to measure prostaglandin-endoperoxide synthase 2(PTGS2) level in rat brain tissue. Metabolomics and transcriptomics analyses were conducted for brain tissue from sham, Mod, and ANP-H groups. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out to indicate the mechanisms of ANP in the intervention of TBI. Integrative metabolomics and transcriptomics analysis revealed the metabolic pathways involved in ANP's intervention in TBI. The results showed that ANP significantly increased the number of Nissl bodies in TBI rat brain tissue, upregulated Bcl-2 expression, and downregulated the levels of caspase-3, TP53, and PTGS2. Compared to the Mod group, the ANP-H group significantly upregulated 12 differential metabolites(DMs) and downregulated 25 DMs. Five key metabolic pathways were identified, including glycerophospholipid metabolism, pyrimidine metabolism, glycine, threonine, and serine metabolism, arginine and proline metabolism, and D-amino acid metabolism. Transcriptomics identified 730 upregulated and 612 downregulated differentially expressed genes(DEGs). Enrichment analysis highlighted that biological functions related to inflammatory responses and apoptotic processes, and key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and mitogen-activated protein kinase(MAPK) were significantly enriched. The data of transcriptomics and metabolomics pinpointed three key metabolic pathways, i.e., glycerophospholipid metabolism, pyrimidine metabolism, and glycine, threonine, and serine metabolism.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Brain Injuries, Traumatic/metabolism*
;
Male
;
Metabolomics
;
Rats, Sprague-Dawley
;
Transcriptome/drug effects*
;
Cyclooxygenase 2/genetics*
;
Brain/metabolism*
;
Caspase 3/genetics*
;
Humans
;
Tumor Suppressor Protein p53/genetics*
5.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*
6.Anti-hepatic fibrosis effect and mechanism of Albiziae Cortex-Tribuli Fructus based on Nrf2/NLRP3/caspase-1 pathway.
Meng-Yuan ZHENG ; Jing-Wen HUANG ; Si-Chen JIANG ; Ze-Yu XIE ; Yi-Xiao XU ; Li YAO
China Journal of Chinese Materia Medica 2025;50(15):4129-4140
This study aims to explore whether Albiziae Cortex-Tribuli Fructus can exert an anti-hepatic fibrosis effect by regulating the nuclear factor E2-related factor 2(Nrf2)/NOD-like receptor protein 3(NLRP3)/cysteine protease-1(caspase-1) pathway and analyze its potential mechanism. In the in vivo experiment, a mouse model of hepatic fibrosis was established by subcutaneous injection of carbon tetrachloride. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), collagen type Ⅳ(ColⅣ), laminin(LN), procollagen type Ⅲ(PCⅢ), and hyaluronic acid(HA) in the serum of mice were measured using a fully automated biochemical analyzer and ELISA. Hematoxylin and eosin(HE) and Masson staining were used to observe inflammation and collagen fiber deposition in the liver tissue. Western blot and RT-qPCR were employed to detect the protein and mRNA expression of collagen type Ⅰ(collagen Ⅰ), α-smooth muscle actin(α-SMA), Nrf2, NLRP3, gasdermin D(GSDMD), and caspase-1 in the hepatic tissue. In the in vitro experiment, human hepatic stellate cells(HSC-LX2) were pretreated with Nrf2 agonist or inhibitor, followed by the addition of blank serum, AngⅡ + blank serum, and AngⅡ + Albiziae Cortex-Tribuli Fructus-containing serum for intervention. Western blot was used to detect the protein expression of Nrf2, NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, and apoptosis-associated speck-like protein(ASC) in cells. DCFH-DA fluorescence probe was used to detect the cellular ROS levels. The results from the in vivo experiment showed that, compared with the model group, Albiziae Cortex-Tribuli Fructus significantly reduced the serum levels of AST, ALT, ColⅣ, LN, PCⅢ, and HA, reduced the infiltration of inflammatory cells and collagen fiber deposition in the liver tissue, significantly upregulated the protein and mRNA expression of Nrf2 in the liver tissue, and significantly downregulated the protein and mRNA expression of collagen I, α-SMA, NLRP3, GSDMD, and caspase-1 in the liver tissue. The results from the in vitro experiment showed that Nrf2 activation decreased the protein expression of NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, ASC, and ROS levels in HSC-LX2, while Nrf2 inhibition showed the opposite trend. Furthermore, Albiziae Cortex-Tribuli Fructus-containing serum directly decreased the expression of the above proteins and ROS levels. In conclusion, Albiziae Cortex-Tribuli Fructus can effectively improve hepatic fibrosis, and its mechanism of action may involve inhibiting pyroptosis through the regulation of the Nrf2/NLRP3/caspase-1 pathway.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Liver Cirrhosis/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Plant Extracts
;
Tribulus
7.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
8.Mechanism of Qizhi Jiangtang capsule inhibits podocyte pyroptosis to improve kidney injury in diabetes nephropathy by regulating NLRP3/caspase-1/GSDMD pathway.
Shanshan SU ; Zhaoan GUO ; Huan YANG ; Hui LIU ; Jingnan TANG ; Xiaoyu JIANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):204-210
Objective To investigate the impact of Qizhi Jiangtang Capsule (QZJT) on renal damage in diabetic nephropathy (DN) mice via NOD like receptors family pyrin domain containing 3/caspase-1/ Gasdermin D (NLRP3/caspase-1/GSDMD) signaling pathway. Methods Mice were randomly allocated into six experimental groups: a normal control group (NC), a diabetic nephropathy model group (DN), a low-dose QZJT treatment group (L-QZJT), a high-dose QZJT treatment group (H-QZJT), a positive control group administered Shenqi Jiangtang Granules (SQJT), and an ML385 group (treated with an inhibitor of nuclear factor erythroid 2-related factor 2, Nrf2). Upon successful model induction, therapeutic interventions were commenced. Renal function impairment in the mice was evaluated through quantification of fasting blood glucose (FBG), 24-hour urinary albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and the kidney-to-body mass ratio (K/B). Renal tissue pathology was evaluated using HE and PAS staining. Serum levels of inflammatory cytokines IL-1β and IL-18 were quantified by ELISA. Levels of podocyte markers and proteins involved in relevant pathways were assessed using Western blot analysis. Results Compared with the NC group, FBG, 24 h UAlb, SCr, and BUN were increased in the DN group, and the K/B mass ratio was also increased. In contrast, compared with the DN group, FBG, 24 h UAlb, SCr, and BUN in both the low-dose (L-QZJT) and high-dose Quanzhou Jintang (H-QZJT) groups were decreased, and the K/B mass ratio was decreased as well. The therapeutic efficacy of H-QZJT was comparable to that of Shenqi Jiangtang Granules. QZJT ameliorated renal histopathological injury in DN mouse, increased the protein levels of Nephrin (a podocyte marker), and decreased the protein levels of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), pro-caspase-1, and GSDMD-N. After ML385 treatment, renal cells exhibited swelling and morphological changes, the inflammatory infiltrate area was enlarged, the protein levels of NLRP3, ASC, pro-caspase-1, and GSDMD-N were up-regulated, and the levels of IL-1β and IL-18 were increased. Conclusion QZJT may inhibit podocyte pyroptosis by acting on the Nrf2 to regulate the NLRP3/caspase-1/GSDMD pathway, thus improving renal damage in DN mouse.
Animals
;
Diabetic Nephropathies/pathology*
;
Podocytes/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Pyroptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Phosphate-Binding Proteins/genetics*
;
Male
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Mice, Inbred C57BL
;
Kidney/pathology*
;
Gasdermins
9.Expression and Biological Function of SPOP in Acute Myeloid Leukemia.
Xue-Ying WAN ; Jing XU ; Xiao-Li LIU ; Hong-Wei WANG
Journal of Experimental Hematology 2025;33(1):32-38
OBJECTIVE:
To study the expression of SPOP in patients with acute myeloid leukemia (AML) and its effect on proliferation, apoptosis and cycle of AML cells.
METHODS:
RT-qPCR was used to detect the expression of SPOP mRNA in bone marrow samples of patients with newly diagnosed AML and normal controls. The stable overexpression of SPOP in AML cell lines THP-1 and U937 were constructed by liposome transfection. The effect of SPOP on cell proliferation was detected by CCK-8, and the effect of SPOP on apoptosis and cell cycle was detected by flow cytometry. The expressions of anti-apoptotic protein Bcl-2 and apoptotic protein Bax, Caspase3 were detected by Western blot.
RESULTS:
The median expression level of SPOP mRNA in normal control group was 0.993 1(0.6303, 1.433), while that in AML group was 0.522 1(0.242 2, 0.723 7). The expression level of SPOP in AML group was significantly lower than that in normal control group ( P < 0.001). After the overexpression of SPOP, the proportion of apoptotic cells in the U937 overexpression group and THP-1 overexpression group was 10.9%±0.3% and 4.6%±015%, which were higher than 8.9%±0.3% and 3.0%±0.30% in the Empty Vector group, respectively (both P < 0.05). The expression of Caspase3 in U937 overexpression group and THP-1 overexpression group was 1.154±0.086 and 1.2±0.077, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). The ratio of Bax/Bcl-2 in U937 overexpression group and THP-1 overexpression group was 1.328±0.057 and 1.669±0.15, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). In the cell proliferation experiment, the number of cells in the U937 overexpression group and THP-1 overexpression group were both slightly lower than those in the Empty Vector group, but the differences were not statistically significant (P >0.05). In the cell cycle experiment, the proportion of G1 cells in the U937 overexpression group and THP-1 overexpression group were both slightly higher than those in the Empty Vector group, but the differences were not statistically significant (P >0.05).
CONCLUSION
SPOP can promote the apoptosis of leukemic cells, and its mechanism may be related to down-regulation of Bcl-2 expression and up-regulation of Bax and Caspase3 expression.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Apoptosis
;
Repressor Proteins/genetics*
;
Cell Proliferation
;
Nuclear Proteins/genetics*
;
Cell Cycle
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
U937 Cells
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
10.Pathogenesis and mechanism of serine protease 23 in skin fibrosis of systemic sclerosis.
Xiandun YUAN ; Zhaohua LI ; Dan XU ; Ting LI ; Dan FANG ; Rong MU
Journal of Peking University(Health Sciences) 2025;57(5):903-910
OBJECTIVE:
It has been reported that the mRNA expression of serine protease 23 (PRSS23) was increased in skin fibroblasts from systemic sclerosis patients (SSc). The purpose of this study is to explore the pathogenetic effect and mechanism of PRSS23 in skin fibrosis of SSc.
METHODS:
The expression of PRSS23 in skin tissues from the SSc patients and healthy controls was detected by immunohisto-chemistry. Fibroblasts isolated from fresh skin tissue were used to detect the expression of PRSS23 by real-time quantitative PCR (RT-qPCR) and Western blot. Overexprssion of PRSS23 in BJ, the fibroblasts cell line of skin, was constructed by lentivirus. After stimulation with 400 μmol/L hydrogen peroxide for 12 h, Annexin V/7-AAD staining was used to detect apoptosis of fibroblasts; flow cytometry and Western blot were used to detect the expression of apoptosis-related protein cleaved Caspase-3. The expression of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in fibroblasts was detected by RT-qPCR and enzyme linked immunosorbent assay (ELISA).
RESULTS:
Compared with the healthy controls, the expression of PRSS23 in skin tissues of the SSc patients was significantly increased [4.952 (3.806-5.439) vs. 0.806 (0.395-1.173), P < 0.001], and fibroblast was the main cell that expressed PRSS23. The mRNA [27.59 (25.02-30.00) vs. 1.00, P < 0.001] and protein [0.675 (0.587-0.837) vs. 0.451 (0.342-0.502), P=0.029] of PRSS23 in skin fibroblasts isolated from the SSc patients were significantly up-regulated. Compared with the control group, the anti-apoptotic ability of skin fibroblasts overexpressing PRSS23 was enhanced, and the proportion of apoptotic cells was significantly reduced after hydrogen peroxide induction [(5.043±1.097)% vs. (17.480±3.212)%, P=0.022], the expression of apoptosis-related protein cleaved Caspase-3 was also markedly reduced [(0.718±0.022) vs. (1.422±0.105), P=0.003]. In addition, the mRNA [(99.780±1.796) vs. (1.000±0.004), P < 0.001] and protein [(211.600±2.431) ng/L vs. (65.930±1.768) ng/L, P < 0.001] of IL-6 in the fibroblasts overexpressing PRSS23 were significantly up-regulated; the mRNA[(3.555±0.555) vs. (1.000±0.004), P < 0.001] and protein levels [(41.190±0.949) ng/L vs. (31.150±0.360) ng/L, P < 0.001] of TNF-α in the fibroblasts overexpressing PRSS23 were also significantly up-regulated.
CONCLUSION
The expression of PRSS23 is increased in skin fibroblasts of SSc patients. PRSS23 can inhibit cell apoptosis, promote the secretion of inflammatory factors such as IL-6 and TNF-α, and regulate the process that skin fibroblasts transform into pro-inflammatory type. So, PRSS23 is associated with the development of skin fibrosis.
Humans
;
Scleroderma, Systemic/enzymology*
;
Fibroblasts/pathology*
;
Apoptosis
;
Skin/metabolism*
;
Fibrosis
;
Interleukin-6/metabolism*
;
Caspase 3/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Male
;
Female
;
Cells, Cultured
;
RNA, Messenger/metabolism*
;
Middle Aged
;
Adult
;
Serine Endopeptidases/genetics*

Result Analysis
Print
Save
E-mail