1.Stellera chamaejasme extract against multidrug resistance of breast cancer cell line MCF-7.
Xi-He CUI ; Rui ZENG ; Yuan-Long ZANG ; Qing YANG ; Xiao-Xin ZHU ; Ya-Jie WANG
China Journal of Chinese Materia Medica 2023;48(9):2360-2367
This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.
Humans
;
Female
;
Breast Neoplasms/metabolism*
;
MCF-7 Cells
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Beclin-1/pharmacology*
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Cell Proliferation
2.Effect of multi-glycosides of Tripterygium wilfordii on renal injury in diabetic kidney disease rats through NLRP3/caspase-1/GSDMD pyroptosis pathway.
Chun-Dong SONG ; Dan SONG ; Ping-Ping JIA ; Feng-Yang DUAN ; Ying DING ; Xian-Qing REN ; Wen-Sheng ZHAI ; Yao-Xian WANG ; Shu-Li HUANG
China Journal of Chinese Materia Medica 2023;48(10):2639-2645
This study investigated the effect of multi-glycosides of Tripterygium wilfordii(GTW) on renal injury in diabetic kidney disease(DKD) rats through Nod-like receptor protein 3(NLRP3)/cysteine-aspartic acid protease-1(caspase-1)/gsdermin D(GSDMD) pyroptosis pathway and the mechanism. To be specific, a total of 40 male SD rats were randomized into the normal group(n=8) and modeling group(n=34). In the modeling group, a high-sugar and high-fat diet and one-time intraperitoneal injection of streptozotocin(STZ) were used to induce DKD in rats. After successful modeling, they were randomly classified into model group, valsartan(Diovan) group, and GTW group. Normal group and model group were given normal saline, and the valsartan group and GTW group received(ig) valsartan and GTW, respectively, for 6 weeks. Blood urea nitrogen(BUN), serum creatinine(Scr), alanine ami-notransferase(ALT), albumin(ALB), and 24 hours urinary total protein(24 h-UTP) were determined by biochemical tests. The pathological changes of renal tissue were observed based on hematoxylin and eosin(HE) staining. Serum levels of interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression of pyroptosis pathway-related proteins in renal tissue, and RT-PCR to determine the expression of pyroptosis pathway-related genes in renal tissue. Compared with the normal group, the model group showed high levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), low level of ALB(P<0.01), severe pathological damage to kidney, and high protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01). Compared with the model group, valsartan group and GTW group had low levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), high level of ALB(P<0.01), alleviation of the pathological damage to the kidney, and low protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01 or P<0.05). GTW may inhibit pyroptosis by decreasing the expression of NLRP3/caspase-1/GSDMD in renal tissue, thereby relieving the inflammatory response of DKD rats and the pathological injury of kidney.
Rats
;
Male
;
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-18/metabolism*
;
Glycosides/pharmacology*
;
Tripterygium
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Pyroptosis
;
Uridine Triphosphate/pharmacology*
;
Kidney
;
Valsartan/pharmacology*
;
RNA, Messenger/metabolism*
;
Diabetes Mellitus
3."Trichosanthis Fructus-Allii Macrostemonis Bulbus" combination inhibits NLRP3 inflammasome activation and reduces inflammatory response in RAW264.7 macrophage by inducing autophagy.
You-Li BAO ; Yin CAO ; Hong-Fei WU
China Journal of Chinese Materia Medica 2023;48(10):2820-2828
This study aims to explore the effect of "Trichosanthis Fructus-Allii Macrostemonis" combination(GX) on the activation of NOD-, LRR-, and pyrin domain-containing protein 3(NLRP3) inflammasome, the release of inflammatory cytokines, and the level of autophagy in RAW264.7 macrophage damaged by lipopolysaccharide(LPS), and the mechanism of GX against inflammatory response in macrophages. To be specific, LPS was used to induce the injury of RAW264.7 cells. Cell Counting Kit-8(CCK-8) assay was employed to measure the survival rate of cells, and Western blot to detect the protein expression of NLRP3, apoptosis-associated speck-like protein(ASC), cysteine-aspartic acid protease(caspase)-1, interleukin(IL)-18, IL-1β, microtubule-associated protein light chain 3(LC3)-Ⅱ, and selective autophagy junction protein p62/sequestosome 1 in RAW264.7 macrophages. ELISA was used to measure the levels of IL-18 and IL-1β in RAW264.7 cells. Transmission electron microscopy was applied to observe the number of autophagosomes in RAW264.7 cells. Immunofulourescence staining was used to detect the expression of LC3-Ⅱ and p62 in RAW264.7 cells. The result showed that GX significantly reduced the protein expression of NLRP3, ASC, and caspase-1 in RAW264.7 cells, significantly increased the protein expression of LC3Ⅱ, decreased the expression of p62, significantly inhibited the secretion of IL-18 and IL-1β, significantly increased the number of autophagosomes, significantly enhanced the immunofluorescence of LC3Ⅱ, and reduced the immunofluorescence of p62. Furthermore, 3-methyladenine(3-MA) could reverse the inhibitory effect of GX on NLRP3, ASC, and caspase-1 and reduce the release of IL-18 and IL-1β. In summary, GX can increase of the autophagy activity of RAW264.7 and inhibit the activation of NLRP3 inflammasome, thereby reducing the release of inflammatory cytokines and suppressing inflammatory response in macrophages.
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Interleukin-18/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophages
;
Cytokines/metabolism*
;
Caspase 1/metabolism*
;
Autophagy
;
Interleukin-1beta/metabolism*
4.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
Animals
;
Reactive Oxygen Species/metabolism*
;
Antioxidants/pharmacology*
;
Oxidative Stress
;
NF-E2-Related Factor 2/metabolism*
;
Caspase 3/metabolism*
;
Parkinson Disease/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Drosophila/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Superoxide Dismutase/metabolism*
;
Adenosine Triphosphate/pharmacology*
5.Oxidative stress induces autophagy to inhibit the proliferation and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs).
Zhijun LIU ; Shaojin LIU ; Weipeng ZHENG ; Hewei WEI ; Zhihao LIAO ; Sheng CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):626-632
Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.
Humans
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Hydrogen Peroxide/pharmacology*
;
Apoptosis
;
TOR Serine-Threonine Kinases/metabolism*
;
Oxidative Stress
;
Autophagy
;
Mesenchymal Stem Cells/metabolism*
;
Cell Proliferation
6.Effect of procalcitonin on lipopolysaccharide-induced expression of nucleotide-binding oligomerization domain-like receptor protein 3 and caspase-1 in human umbilical vein endothelial cells.
Wen JIANG ; Ding-Hua SHI ; Yan-Juan HE ; Chun-Yuan CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(5):521-526
OBJECTIVES:
To study the effect of procalcitonin (PCT) on lipopolysaccharide (LPS)-induced expression of the pyroptosis-related proteins nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 in human umbilical vein endothelial cells (HUVECs).
METHODS:
HUVECs were induced by LPS to establish a model of sepsis-induced inflammatory endothelial cell injury. The experiment was divided into two parts. In the first part, HUVECs were randomly divided into four groups: normal control, LPS (1 μg/mL), PCT (10 ng/mL), and LPS+PCT (n=3 each). In the second part, HUVECs were randomly grouped: normal control, LPS, and LPS+PCT of different concentrations (0.1, 1, 10, and 100 ng/mL) (n=3 each). Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of NLRP3 and caspase-1 in each group.
RESULTS:
In the first experiment: compared with the normal control group, the PCT, LPS, and LPS+PCT groups had significantly upregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05); compared with the LPS group, the LPS+PCT group had significantly downregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05). In the second experiment: compared with those in the LPS group, the mRNA and protein expression levels of NLRP3 and caspase-1 in the LPS+PCT of different concentrations groups were significantly downregulated in a concentration-dependent manner (P<0.05).
CONCLUSIONS
LPS can promote the expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs, while PCT can inhibit the LPS-induced expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs in a concentration-dependent manner.
Humans
;
Caspase 1/metabolism*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Procalcitonin
;
Nucleotides/pharmacology*
7.The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro.
Tong LIU ; Qing-Qing SHAO ; Wen-Jia WANG ; Tian-Li LIU ; Xi-Ming JIN ; Li-Jun XU ; Guang-Ying HUANG ; Zhuo CHEN
Journal of Integrative Medicine 2023;21(3):277-288
OBJECTIVE:
JieZe-1 (JZ-1), a Chinese herbal prescription, has an obvious effect on genital herpes, which is mainly caused by herpes simplex virus type 2 (HSV-2). Our study aimed to address whether HSV-2 induces pyroptosis of VK2/E6E7 cells and to investigate the anti-HSV-2 activity of JZ-1 and the effect of JZ-1 on caspase-1-dependent pyroptosis.
METHODS:
HSV-2-infected VK2/E6E7 cells and culture supernate were harvested at different time points after the infection. Cells were co-treated with HSV-2 and penciclovir (0.078125 mg/mL) or caspase-1 inhibitor VX-765 (24 h pretreatment with 100 μmol/L) or JZ-1 (0.078125-50 mg/mL). Cell counting kit-8 assay and viral load analysis were used to evaluate the antiviral activity of JZ-1. Inflammasome activation and pyroptosis of VK2/E6E7 cells were analyzed using microscopy, Hoechst 33342/propidium iodide staining, lactate dehydrogenase release assay, gene and protein expression, co-immunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay.
RESULTS:
HSV-2 induced pyroptosis of VK2/E6E7 cells, with the most significant increase observed 24 h after the infection. JZ-1 effectively inhibited HSV-2 (the 50% inhibitory concentration = 1.709 mg/mL), with the 6.25 mg/mL dose showing the highest efficacy (95.76%). JZ-1 (6.25 mg/mL) suppressed pyroptosis of VK2/E6E7 cells. It downregulated the inflammasome activation and pyroptosis via inhibiting the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (P < 0.001) and interferon-γ-inducible protein 16 (P < 0.001), and their interactions with apoptosis-associated speck-like protein containing a caspase recruitment domain, and reducing cleaved caspase-1 p20 (P < 0.01), gasdermin D-N (P < 0.01), interleukin (IL)-1β (P < 0.001), and IL-18 levels (P < 0.001).
CONCLUSION
JZ-1 exerts an excellent anti-HSV-2 effect in VK2/E6E7 cells, and it inhibits caspase-1-dependent pyroptosis induced by HSV-2 infection. These data enrich our understanding of the pathologic basis of HSV-2 infection and provide experimental evidence for the anti-HSV-2 activity of JZ-1. Please cite this article as: Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med. 2023; 21(3): 277-288.
Caspase 1/metabolism*
;
Inflammasomes/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Simplexvirus/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Herpes Simplex/drug therapy*
;
Humans
8.Mechanism of total flavonoids of Rhododendra simsii in alleviating ischemic brain injury.
Chen-Chen JIANG ; Lei SHI ; Xin-Ya ZHAO ; Hui ZHANG ; Zi-Xu LI ; Jia-Jun LU ; Yu-Xiang HE ; Di CAO ; Hao-Ran HU ; Jun HAN
China Journal of Chinese Materia Medica 2023;48(2):455-464
This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.
Animals
;
Male
;
Rats
;
Apoptosis
;
Brain Ischemia/metabolism*
;
Caspase 3
;
Interleukin-1
;
Interleukin-6
;
Rats, Sprague-Dawley
;
Reperfusion Injury/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
;
Flavonoids/pharmacology*
;
Rhododendron/chemistry*
9.Anti-pyroptosis effect of Albiziae Cortex-Tribuli Fructus combination on hepatic stellate cell line LX2: based on network pharmacology.
Ze-Yu XIE ; Yi-Xiao XU ; Meng-Yuan ZHENG ; Jing-Ru ZHENG ; Li YAO
China Journal of Chinese Materia Medica 2023;48(2):481-491
Based on network pharmacology, molecular docking, and in vitro experimental verification, this study aims to explore the effect of Albiziae Cortex-Tribuli Fructus combination on HSC-LX2 pyroptosis. Specifically, the targets of Albiziae Cortex, Tribuli Fructus, and hepatic fibrosis were retrieved from an online database and CNKI, and "drug-component-target" network and "drug-component-target-disease" network were constructed. Protein-protein interaction(PPI) network was established based on STRING. Metascape was employed for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and the mechanism of Albiziae Cortex-Tribuli Fructus combination against liver fibrosis was predicted. Molecular docking was used to verify some of the results of network pharmacology, and in vitro experiment was carried out to further verify the above conclusions. According to the results of network pharmacological analysis, 25 active components and 439 targets of Albiziae Cortex-Tribuli Fructus combination and 152 anti-liver fibrosis targets were screened out, including nucleotide-binding oligomerization domain and leucine-rich-repeat-and pyrin-domain-containing 3(NLRP3) and caspase-1. The key targets were involved in 194 KEGG pathways in which the NOD-like receptor signaling pathway topped. The binding common targets were related to pyroptosis. The results of in vitro experiment showed that the pair-containing serum reduced the proliferation rate of HSC-LX2 and the content of reactive oxygen species(ROS), interleukin-18(IL-18), and interleukin-1β(IL-1β)(P<0.05). Western blot and qRT-PCR suggested that the protein and gene expression of NLRP3, caspase-1, α-smooth muscle actin(α-SMA), and gasdermin D(GSDMD) in HSC-LX2 increased after AngⅡ stimulation, and the expression decreased after the intervention of pair-containing serum(P<0.05). In summary, the pair-containing serum can inhibit the classic pathway of pyroptosis, which may be the anti-liver fibrosis mechanism. This is consistent with the predicted results of network pharmacology.
Humans
;
Hepatic Stellate Cells
;
Network Pharmacology
;
Molecular Docking Simulation
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Caspase 1/genetics*
;
Fibrosis
;
Drugs, Chinese Herbal/pharmacology*
10.Effects of Huangqin Tang on NLRP3/Caspase-1 pathway in mice model of ulcerative colitis.
Meng-Ru LIU ; Hui LI ; Lan-Fu WEI ; Xiao-Tong LIU ; Zhen-Tao AN ; Li-Mei GU ; Yao-Zhou TIAN
China Journal of Chinese Materia Medica 2023;48(1):226-233
The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1β, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1β, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1β, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1β, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.
Animals
;
Mice
;
Caspase 1/genetics*
;
Colitis, Ulcerative/genetics*
;
Colon
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Interleukin-10/genetics*
;
Interleukin-6/genetics*
;
Mesalamine/pharmacology*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Scutellaria baicalensis/chemistry*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*

Result Analysis
Print
Save
E-mail