1.Caspase-1/-11 participates in LPS-induced sepsis-associated acute kidney injury by cleaving GSDMD.
Bin ZHAI ; Li-Sha MA ; Rui-Qin SHEN ; Jian YU ; Yi-Nan TAO ; Ai-Ping XU ; De-Cui SHAO
Acta Physiologica Sinica 2023;75(1):10-16
The present study was aimed to investigate whether Gasdermin D (GSDMD)-mediated pyroptosis participated in lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (AKI), and to explore the role of caspase-1 and caspase-11 pyroptosis pathways in this process. The mice were divided into four groups: wild type (WT), WT-LPS, GSDMD knockout (KO) and KO-LPS. The sepsis-associated AKI was induced by intraperitoneal injection of LPS (40 mg/kg). Blood samples were taken to determine the concentration of creatinine and urea nitrogen. The pathological changes of renal tissue were observed via HE staining. Western blot was used to investigate the expression of pyroptosis-associated proteins. The results showed that the concentrations of serum creatinine and urea nitrogen in the WT-LPS group were significantly increased, compared with those in the WT group (P < 0.01); whereas serum creatinine and urea nitrogen in the KO-LPS group were significantly decreased, compared with those in the WT-LPS group (P < 0.01). HE staining results showed that LPS-induced renal tubular dilatation was mitigated in GSDMD KO mice. Western blot results showed that LPS up-regulated the protein expression levels of interleukin-1β (IL-1β), GSDMD and GSDMD-N in WT mice. GSDMD KO significantly down-regulated the protein levels of IL-1β, caspase-11, pro-caspase-1, caspase-1(p22) induced by LPS. These results suggest that GSDMD-mediated pyroptosis is involved in LPS-induced sepsis-associated AKI. Caspase-1 and caspase-11 may be involved in GSDMD cleavage.
Animals
;
Mice
;
Acute Kidney Injury
;
Caspase 1
;
Caspases/metabolism*
;
Creatinine
;
Lipopolysaccharides
;
Mice, Knockout
;
Nitrogen
;
Sepsis
;
Urea
;
Gasdermins/metabolism*
2.Mechanism of total flavonoids of Rhododendra simsii in alleviating ischemic brain injury.
Chen-Chen JIANG ; Lei SHI ; Xin-Ya ZHAO ; Hui ZHANG ; Zi-Xu LI ; Jia-Jun LU ; Yu-Xiang HE ; Di CAO ; Hao-Ran HU ; Jun HAN
China Journal of Chinese Materia Medica 2023;48(2):455-464
This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.
Animals
;
Male
;
Rats
;
Apoptosis
;
Brain Ischemia/metabolism*
;
Caspase 3
;
Interleukin-1
;
Interleukin-6
;
Rats, Sprague-Dawley
;
Reperfusion Injury/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
;
Flavonoids/pharmacology*
;
Rhododendron/chemistry*
3.Effects of Huangqin Tang on NLRP3/Caspase-1 pathway in mice model of ulcerative colitis.
Meng-Ru LIU ; Hui LI ; Lan-Fu WEI ; Xiao-Tong LIU ; Zhen-Tao AN ; Li-Mei GU ; Yao-Zhou TIAN
China Journal of Chinese Materia Medica 2023;48(1):226-233
The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1β, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1β, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1β, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1β, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.
Animals
;
Mice
;
Caspase 1/genetics*
;
Colitis, Ulcerative/genetics*
;
Colon
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Interleukin-10/genetics*
;
Interleukin-6/genetics*
;
Mesalamine/pharmacology*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Scutellaria baicalensis/chemistry*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
4.Hepatitis B virus X protein promotes podocyte pyroptosis in hepatitis B virus-associated glomerulonephritis by down-regulating microRNA -223 targeting NLRP3 inflammasome.
Ya Ni YU ; Yue Qi CHEN ; Bao Shuang LI ; Xiao Qian YANG ; Mo Xuan FENG ; Wei JIANG
Chinese Journal of Hepatology 2023;39(1):20-31
Objective: To investigate the potential function and related mechanism of microRNA-223 (miRNA-223) in the podocyte pyroptosis of hepatitis B virus (HBV)-associated glomerulonephritis induced by HBV X protein (HBx). Methods: HBx-overexpressing lentivirus was transfected into human renal podocytes to mimic the pathogenesis of HBV-GN. Real-time fluorescence quantitative PCR and Western blotting experiments were used to detect the mRNA and protein expression of pyroptosis-related proteins [nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1], and inflammatory factors (interleukin-1β and interleukin-18), respectively.TUNEL staining and flow cytometry were used to detect the number of pyroptosis cells. Immunofluorescence staining was used to detect the expression of podocytes biomarkers desmin and nephrin; Hoechst 33342 staining was used to observe the morphological and quantitative changes of podocyte nuclei. Enzyme-linked immunosorbent assay was used to measure caspase-1 activity. The dual luciferase reporter gene assay was used to verify the downstream target of miRNA-223. Podocytes were divided into the following nine groups: control group (no special treatment), empty plasmid group (transfected with empty plasmid), HBx overexpression group (transfected with HBx overexpression lentivirus), HBx overexpression+miRNA-223 mimic group (transfected with HBx overexpression lentivirus and miRNA-223 mimic), HBx overexpression+miRNA-223 inhibitor group (transfected with HBx overexpression lentivirus and miRNA-223 inhibitor), HBx overexpression+miRNA-223 mimic+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 mimic+ NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 siRNA), HBx overexpression+miRNA-223 inhibitor+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 inhibitor+NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 siRNA). Results: miRNA-223 was down-regulated in HBx overexpression group compared with the control group (P < 0.05). TUNEL and immunofluorescence staining showed that NLRP3 knockdown attenuated podocyte injury and pyroptosis induced by HBx overexpression (P < 0.05). Dual luciferase reporter gene assay demonstrated that NLRP3 was one of the downstream targets of miRNA-223. Rescue experiments revealed that NLRP3 overexpression weakened the protective effect of miRNA-223 in podocyte injury (P < 0.05). The addition of miRNA-223 mimic and NLRP3 siRNA decreased the expression of NLRP3 inflammasome and cytokines, and reduced the number of pyroptosis cells induced by HBx overexpression (all P < 0.05); The addition of miRNA-223 inhibitor and NLRP3 overexpression plasmid significantly increased the expression of NLRP3 inflammasome and cytokines, caspase-1 activity, and the number of pyroptosis cells (all P < 0.05). Conclusion: HBx may promote podocyte pyroptosis of HBV-GN via downregulating miRNA-223 targeting NLRP3 inflammasome, suggesting that miRNA-223 is expected to be a potential target for the treatment of HBV-GN.
Humans
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Podocytes/metabolism*
;
Hepatitis B virus/genetics*
;
Caspase 1/metabolism*
;
Cytokines/metabolism*
;
Carrier Proteins/metabolism*
;
MicroRNAs/genetics*
;
Glomerulonephritis/metabolism*
;
RNA, Small Interfering
5.Research progress in effects of pyroptosis on intestinal inflammatory injury.
Dandan LIU ; Xiaolin ZHONG ; Wenyu CAO ; Ling CHEN
Journal of Central South University(Medical Sciences) 2023;48(2):252-259
Inflammatory injury of the intestine is often accompanied by symptoms such as damage to intestinal mucosa, increased intestinal permeability, and intestinal motility dysfunction. Inflammatory factors spread throughout the body via blood circulation, and can cause multi-organ failure. Pyroptosis is a newly discovered way of programmed cell death, which is mainly characterized by the formation of plasma membrane vesicles, cell swelling until the rupture of the cell membrane, and the release of cell contents, thereby activating a drastic inflammatory response and expanding the inflammatory response cascade. Pyroptosis is widely involved in the occurrence of diseases, and the underlying mechanisms for inflammation are still a hot spot of current research. The caspase-1 mediated canonical inflammasome pathway of pyroptosis and caspase-4/5/8/11-mediated non-canonical inflammasome pathway are closely related to the occurrence and development of intestinal inflammation. Therefore, investigation of the signaling pathways and molecular mechanisms of pyroptosis in intestinal injury in sepsis, inflammatory bowel diseases, infectious enteristic, and intestinal tumor is of great significance for the prevention and treatment of intestinal inflammatory injury.
Humans
;
Pyroptosis
;
Inflammasomes/metabolism*
;
Apoptosis
;
Caspase 1
;
Inflammation
6.Effect of procalcitonin on lipopolysaccharide-induced expression of nucleotide-binding oligomerization domain-like receptor protein 3 and caspase-1 in human umbilical vein endothelial cells.
Wen JIANG ; Ding-Hua SHI ; Yan-Juan HE ; Chun-Yuan CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(5):521-526
OBJECTIVES:
To study the effect of procalcitonin (PCT) on lipopolysaccharide (LPS)-induced expression of the pyroptosis-related proteins nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 in human umbilical vein endothelial cells (HUVECs).
METHODS:
HUVECs were induced by LPS to establish a model of sepsis-induced inflammatory endothelial cell injury. The experiment was divided into two parts. In the first part, HUVECs were randomly divided into four groups: normal control, LPS (1 μg/mL), PCT (10 ng/mL), and LPS+PCT (n=3 each). In the second part, HUVECs were randomly grouped: normal control, LPS, and LPS+PCT of different concentrations (0.1, 1, 10, and 100 ng/mL) (n=3 each). Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of NLRP3 and caspase-1 in each group.
RESULTS:
In the first experiment: compared with the normal control group, the PCT, LPS, and LPS+PCT groups had significantly upregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05); compared with the LPS group, the LPS+PCT group had significantly downregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05). In the second experiment: compared with those in the LPS group, the mRNA and protein expression levels of NLRP3 and caspase-1 in the LPS+PCT of different concentrations groups were significantly downregulated in a concentration-dependent manner (P<0.05).
CONCLUSIONS
LPS can promote the expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs, while PCT can inhibit the LPS-induced expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs in a concentration-dependent manner.
Humans
;
Caspase 1/metabolism*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Procalcitonin
;
Nucleotides/pharmacology*
7.Tanshinone IIA inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis and autophagy by regulating ABCE1.
Chinese Critical Care Medicine 2023;35(6):627-632
OBJECTIVE:
To investigate the effects of tanshinone IIA on apoptosis and autophagy induced by hypoxia/reoxygenation in H9C2 cardiomyocytes and its mechanism.
METHODS:
H9C2 cardiomyocytes in logarithmic growth phase were divided into control group, hypoxia/reoxygenation model group and tanshinone IIA low-dose, medium-dose and high-dose groups (50, 100, 200 mg/L tanshinone IIA were treated after hypoxia/reoxygenation respectively). The dose with good therapeutic effect was selected for follow-up study. The cells were divided into control group, hypoxia/reoxygenation model group, tanshinone IIA+pcDNA3.1-NC group and tanshinone IIA+pcDNA3.1-ABCE1 group. The cells were transfected with the overexpressed plasmids pcDNA3.1-ABCE1 and pcDNA3.1-NC and then treated accordingly. Cell counting kit-8 (CCK-8) was used to detect H9C2 cell activity in each group. The apoptosis rate of cardiomyocytes was detected by flow cytometry. The ATP-binding cassette transporter E1 (ABCE1), apoptosis-related proteins Bcl-2 and Bax, caspase-3, autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3II/I) and p62 mRNA expression level of H9C2 cells in each group were detected by real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The protein expression levels of the above indexes in H9C2 cells were detected by Western blotting.
RESULTS:
(1) Cell activity and ABCE1 expression: tanshinone IIA inhibited the activity of H9C2 cells induced by hypoxia/reoxygenation, and the effect was significant at medium-dose [(0.95±0.05)% vs. (0.37±0.10)%, P < 0.01], mRNA and protein expression of ABCE1 were significantly reduced [ABCE1 mRNA (2-ΔΔCt): 2.02±0.13 vs. 3.74±0.17, ABCE1 protein (ABCE1/GAPDH): 0.46±0.04 vs. 0.68±0.07, both P < 0.05]. (2) Expression of apoptosis-related proteins: medium-dose of tanshinone IIA inhibited the apoptosis of H9C2 cells induced by hypoxia/reoxygenation [apoptosis rate: (28.26±2.52)% vs. (45.27±3.07)%, P < 0.05]. Compared with the hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated the protein expression of Bax and caspase-3 in H9C2 cells induced by hypoxia/reoxygenation, and significantly up-regulated the protein expression of Bcl-2 [Bax (Bax/GAPDH): 0.28±0.03 vs. 0.47±0.03, caspase-3 (caspase-3/GAPDH): 0.31±0.02 vs. 0.44±0.03, Bcl-2 (Bcl-2/GAPDH): 0.53±0.02 vs. 0.37±0.05, all P < 0.05]. (3) Expression of autophagy-related proteins: compared with the control group, the positive rate of LC3 in the hypoxia/reoxygenation model group was significantly increased, while the positive rate of LC3 in the medium-dose of tanshinone IIA group was significantly decreased [(20.67±3.09)% vs. (42.67±3.86)%, P < 0.01]. Compared with hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated Beclin-1, LC3II/I and p62 protein expressions [Beclin-1 (Beclin-1/GAPDH): 0.27±0.05 vs. 0.47±0.03, LC3II/I ratio: 0.24±0.05 vs. 0.47±0.04, p62 (p62/GAPDH): 0.21±0.03 vs. 0.48±0.02, all P < 0.05]. (4) Expression of apoptosis and autophagy related proteins after transfection with overexpressed ABCE1 plasmid: compared with tanshinone IIA+pcDNA3.1-NC group, the protein expression levels of Bax, caspase-3, Beclin-1, LC3II/I and p62 in tanshinone IIA+pcDNA3.1-ABCE1 group were significantly up-regulated, while the protein expression level of Bcl-2 was significantly down-regulated.
CONCLUSIONS
100 mg/L tanshinone IIA could inhibit autophagy and apoptosis of cardiomyocytes by regulating the expression level of ABCE1. So, it protects H9C2 cardiomyocytes injury induced by hypoxia/reoxygenation.
Humans
;
Apoptosis
;
ATP-Binding Cassette Transporters/metabolism*
;
Autophagy
;
bcl-2-Associated X Protein/metabolism*
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Follow-Up Studies
;
Myocytes, Cardiac
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Hypoxia
8.The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro.
Tong LIU ; Qing-Qing SHAO ; Wen-Jia WANG ; Tian-Li LIU ; Xi-Ming JIN ; Li-Jun XU ; Guang-Ying HUANG ; Zhuo CHEN
Journal of Integrative Medicine 2023;21(3):277-288
OBJECTIVE:
JieZe-1 (JZ-1), a Chinese herbal prescription, has an obvious effect on genital herpes, which is mainly caused by herpes simplex virus type 2 (HSV-2). Our study aimed to address whether HSV-2 induces pyroptosis of VK2/E6E7 cells and to investigate the anti-HSV-2 activity of JZ-1 and the effect of JZ-1 on caspase-1-dependent pyroptosis.
METHODS:
HSV-2-infected VK2/E6E7 cells and culture supernate were harvested at different time points after the infection. Cells were co-treated with HSV-2 and penciclovir (0.078125 mg/mL) or caspase-1 inhibitor VX-765 (24 h pretreatment with 100 μmol/L) or JZ-1 (0.078125-50 mg/mL). Cell counting kit-8 assay and viral load analysis were used to evaluate the antiviral activity of JZ-1. Inflammasome activation and pyroptosis of VK2/E6E7 cells were analyzed using microscopy, Hoechst 33342/propidium iodide staining, lactate dehydrogenase release assay, gene and protein expression, co-immunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay.
RESULTS:
HSV-2 induced pyroptosis of VK2/E6E7 cells, with the most significant increase observed 24 h after the infection. JZ-1 effectively inhibited HSV-2 (the 50% inhibitory concentration = 1.709 mg/mL), with the 6.25 mg/mL dose showing the highest efficacy (95.76%). JZ-1 (6.25 mg/mL) suppressed pyroptosis of VK2/E6E7 cells. It downregulated the inflammasome activation and pyroptosis via inhibiting the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (P < 0.001) and interferon-γ-inducible protein 16 (P < 0.001), and their interactions with apoptosis-associated speck-like protein containing a caspase recruitment domain, and reducing cleaved caspase-1 p20 (P < 0.01), gasdermin D-N (P < 0.01), interleukin (IL)-1β (P < 0.001), and IL-18 levels (P < 0.001).
CONCLUSION
JZ-1 exerts an excellent anti-HSV-2 effect in VK2/E6E7 cells, and it inhibits caspase-1-dependent pyroptosis induced by HSV-2 infection. These data enrich our understanding of the pathologic basis of HSV-2 infection and provide experimental evidence for the anti-HSV-2 activity of JZ-1. Please cite this article as: Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med. 2023; 21(3): 277-288.
Caspase 1/metabolism*
;
Inflammasomes/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Simplexvirus/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Herpes Simplex/drug therapy*
;
Humans
9.Role and mechanisms of CHI3L1 in coronary artery lesions in a mouse model of Kawasaki disease-like vasculitis.
Yue CAO ; Shuai GAO ; Gang LUO ; Shui-Yan ZHAO ; Ya-Qi TANG ; Zhan-Hui DU ; Si-Lin PAN
Chinese Journal of Contemporary Pediatrics 2023;25(12):1227-1233
OBJECTIVES:
To explore the role and potential mechanisms of chitinase-3-like protein 1 (CHI3L1) in coronary artery lesions in a mouse model of Kawasaki disease (KD)-like vasculitis.
METHODS:
Four-week-old male SPF-grade C57BL/6 mice were randomly divided into a control group and a model group, with 10 mice in each group. The model group mice were intraperitoneally injected with 0.5 mL of lactobacillus casei cell wall extract (LCWE) to establish a mouse model of KD-like vasculitis, while the control group mice were injected with an equal volume of normal saline. The general conditions of the mice were observed on the 3rd, 7th, and 14th day after injection. Changes in coronary artery tissue pathology were observed using hematoxylin-eosin staining. The level of CHI3L1 in mouse serum was measured by enzyme-linked immunosorbent assay. Immunofluorescence staining was used to detect the expression and localization of CHI3L1, von Willebrand factor (vWF), and α-smooth muscle actin (α-SMA) in coronary artery tissue. Western blot analysis was used to detect the expression of CHI3L1, vWF, vascular endothelial cadherin (VE cadherin), Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), nuclear factor κB (NF-κB), and phosphorylated NF-κB (p-NF-κB) in coronary artery tissue.
RESULTS:
The serum level of CHI3L1 in the model group was significantly higher than that in the control group (P<0.05). Compared to the control group, the expression of CHI3L1 in the coronary artery tissue was higher, while the expression of vWF was lower in the model group. The relative expression levels of CHI3L1, Bax, Caspase-3, NF-κB, and p-NF-κB were significantly higher in the model group than in the control group (P<0.05). The relative expression levels of vWF, VE cadherin, and Bcl-2 were lower in the model group than in the control group (P<0.05).
CONCLUSIONS
In the LCWE-induced mouse model of KD-like vasculitis, the expression levels of CHI3L1 in serum and coronary arteries increase, and it may play a role in coronary artery lesions through endothelial cell apoptosis mediated by inflammatory reactions.
Male
;
Animals
;
Mice
;
Mucocutaneous Lymph Node Syndrome/pathology*
;
Coronary Vessels/pathology*
;
NF-kappa B
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Chitinase-3-Like Protein 1
;
von Willebrand Factor/metabolism*
;
Mice, Inbred C57BL
;
Cadherins
10.Stellera chamaejasme extract against multidrug resistance of breast cancer cell line MCF-7.
Xi-He CUI ; Rui ZENG ; Yuan-Long ZANG ; Qing YANG ; Xiao-Xin ZHU ; Ya-Jie WANG
China Journal of Chinese Materia Medica 2023;48(9):2360-2367
This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.
Humans
;
Female
;
Breast Neoplasms/metabolism*
;
MCF-7 Cells
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Beclin-1/pharmacology*
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Cell Proliferation

Result Analysis
Print
Save
E-mail