1.Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome.
Chao WANG ; Yan-Ping ZHU ; BAYIERCAICIKE ; Yu-Qing FENG ; Yan-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1119-1127
OBJECTIVES:
To investigate whether mesenchymal stem cell-derived exosomes (MSC-Exo) alleviate white matter damage (WMD) in neonatal rats by targeting the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3).
METHODS:
Three-day-old Sprague-Dawley rats were randomly assigned to four groups: Sham, hypoxia-ischemia (HI), MSC-Exo, and MCC950 (NLRP3 inhibitor) (n=24 per group). The WMD model was established by unilateral common carotid artery ligation combined with hypoxia. Exosomes (1×108 particles/μL) were transplanted into the lateral ventricle using stereotaxic guidance. Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in brain tissue, and transmission electron microscopy was used to assess myelinated axons. Western blotting was performed to detect the expression of myelin basic protein (MBP), NLRP3, caspase-1, and interleukin-1β (IL-1β). Immunohistochemistry was used to measure NLRP3, caspase-1, and IL-1β expression. Twenty-eight days post-modeling, behavioral changes were evaluated using the Morris water maze.
RESULTS:
In the HI group, marked inflammatory cell infiltration, extensive vacuolation, and decreased numbers of myelinated axons were observed compared to the Sham group. The MSC-Exo group showed reduced inflammatory infiltration, fewer vacuoles, and increased myelinated axons compared to the HI group, while the MCC950 group showed nearly normal cell morphology. Compared to the Sham group, the HI group exhibited decreased MBP expression, fewer platform crossings, shorter time in the target quadrant, increased expression of NLRP3, caspase-1, and IL-1β, and longer escape latency (all P<0.05). Compared to the HI group, the MSC-Exo and MCC950 groups showed increased MBP expression, more platform crossings, longer target quadrant stay, and reduced NLRP3, caspase-1, and IL-1β expression, as well as shorter escape latency (all P<0.05).
CONCLUSIONS
MSC-Exo may attenuate white matter damage in neonatal rats by targeting the NLRP3 inflammasome and promoting oligodendrocyte maturation.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
White Matter/pathology*
;
Inflammasomes/physiology*
;
Rats
;
Animals, Newborn
;
Mesenchymal Stem Cells
;
Interleukin-1beta/analysis*
;
Male
;
Caspase 1/analysis*
;
Hypoxia-Ischemia, Brain/therapy*
;
Myelin Basic Protein/analysis*
2.Mechanism of Regulating MK2 to Improve Bone Marrow Inflammatory Damage after Hematopoietic Stem Cell Transplantation.
Zhao-Hui WANG ; Bo LONG ; Yu-Han WANG ; Zhi-Ting LIU ; Zi-Jie XU ; Shuang DING
Journal of Experimental Hematology 2025;33(5):1453-1460
OBJECTIVE:
To investigate the role of MK2 inhibitor MMI-0100 on inflammatory response after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and related mechanisms.
METHODS:
An allo-HSCT mouse model was established. Recipient rats were randomly divided into BMT+NaCl group and BMT+MMI-0100 group, and were injected with NaCl and MMI-0100 every day after transplantation, respectively. Samples of the two groups were collected on d 7 and 14, femur paraffin sections were stained with HE, and pathological changes in the bone marrow cavity were observed under the light microscope. The gene and protein expression levels of pro-inflammatory cytokines IL-1β and IL-18 were detected by qPCR and Western blot. Macrophage typing was detected by flow cytometry. The expression levels of NLRP3 and Caspase-1 were detected by Western blot.
RESULTS:
Inflammatory cell infiltration in the bone marrow cavity was significantly reduced in the BMT+MMI-0100 group. Western blot results showed that the protein expression levels of IL-1β and IL-18 in the BMT+MMI-0100 group were decreased compared to the BMT+NaCl group on day 7 and day 14 (all P <0.01). The qPCR results showed that compared to the BMT+NaCl group, the IL-18 gene expression levels in the BMT+MMI-0100 group were significantly reduced on day 7 and day 14 (both P <0.01). In the BMT+MMI-0100 group, the expression level of IL-1β gene decreased on day 7 (P <0.05), but increased and was higher than that in the BMT+NaCl group on day 14 (P <0.05). Flow cytometry results showed that the expression of M1 macrophages and M1/M2 ratio decreased in the BMT+MMI-0100 group compared to BMT+NaCl group (all P <0.05). Western blot results showed that the protein expression levels of NLRP3 and Caspase-1 in the BMT+MMI-0100 group were lower than those in the BMT+NaCl group (all P <0.05).
CONCLUSION
MMI-0100 can ameliorate bone marrow inflammatory injury after allo-HSCT and may act by reducing NLRP3 expression to promote M2 polarization.
Animals
;
Interleukin-1beta/metabolism*
;
Rats
;
Interleukin-18/metabolism*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammation
;
Bone Marrow/pathology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Caspase 1/metabolism*
;
Macrophages
;
Transplantation, Homologous
3.Knockdown of Bmi1 inhibits bladder cancer cell growth both in vitro and in vivo by blocking cell cycle at G1 phase and inducing apoptosis.
Hong-bo LUO ; Bin LI ; Wei-gang YUAN ; Chuan-rui XU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):730-735
Bmi1 is a member of the polycomb group family of proteins, and it drives the carcinogenesis of various cancers and governs the self-renewal of multiple types of stem cells. However, its role in the initiation and progression of bladder cancer is not clearly known. The present study aimed to investigate the function of Bmi1 in the development of bladder cancer. Bmi1 expression was detected in human bladder cancer tissues and their adjacent normal tissues (n=10) by immunohistochemistry, qRT-PCR and Western blotting, respectively. Bmi1 small interference RNA (siRNA) was synthesized and transfected into human bladder carcinoma cells (EJ) by lipofectamine 2000. The Bmil expression at mRNA and protein levels was measured in EJ cells transfected with Bmil siRNA (0, 80, 160 nmol/L) by qRT-PCR and Western blotting, respectively. Cell viability and Ki67 expression (a marker of cell proliferation) were determined in Bmi1 siRNA-transfected cells by CCK-8 assay and qRT-PCR, respectively. Cell cycle of transfected cells was flow-cytometrically determined. Immunofluorescence and Western blotting were used to detect the expression levels of cell cycle-associated proteins cyclin D1 and cyclin E in the cells. Pro-apoptotic proteins Bax and caspase 3 and anti-apoptotic protein Bcl-2 were detected by Western blotting as well. Additionally, xenograft tumor models were established by inoculation of EJ cells (infected with Bmil shRNA/pLKO.1 lentivirus or not) into nude mice. The tumor volumes were measured every other day for 14 days. The results showed that the Bmil expression was significantly increased in bladder tumor tissues when compared with that in normal tissues (P<0.05). Perturbation of Bmi1 expression by using siRNA could significantly inhibit the proliferation of EJ cells (P<0.05). Bmi1 siRNA-transfected EJ cells were accumulated in G1 phase and the expression levels of cyclin D1 and cyclin E were down-regulated. Bax and caspase-3 expression levels were significantly increased and Bcl-2 levels decreased after Bmi1 knockdown. Tumor volume was conspicuously reduced in mice injected with EJ cells with Bmi1 knockdown. Our findings indicate that Bmi1 is a potential driver oncogene of bladder cancer and it may become a potential treatment target for human bladder cancer.
Animals
;
Apoptosis
;
genetics
;
Carcinogenesis
;
genetics
;
metabolism
;
pathology
;
Carcinoma
;
genetics
;
metabolism
;
pathology
;
therapy
;
Caspase 3
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cyclin D1
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Cyclin E
;
antagonists & inhibitors
;
genetics
;
metabolism
;
G1 Phase Cell Cycle Checkpoints
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Injections, Intralesional
;
Ki-67 Antigen
;
genetics
;
metabolism
;
Mice
;
Mice, Nude
;
Polycomb Repressive Complex 1
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA, Small Interfering
;
administration & dosage
;
genetics
;
metabolism
;
Signal Transduction
;
Tumor Burden
;
Urinary Bladder
;
metabolism
;
pathology
;
Urinary Bladder Neoplasms
;
genetics
;
metabolism
;
pathology
;
therapy
;
Xenograft Model Antitumor Assays
;
bcl-2-Associated X Protein
;
agonists
;
genetics
;
metabolism
4.Isochamaejasmin induces apoptosis in leukemia cells through inhibiting Bcl-2 family proteins.
Shou-De ZHANG ; Lei SHAN ; Wei LI ; Hong-Lin LI ; Wei-Dong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(9):660-666
The biflavonoid isochamaejasmin is mainly distributed in the root of Stellera chamaejasme L. (Thymelaeaceae) that is used in traditional Chinese medicine (TCM) to treat tumors, tuberculosis, and psoriasis. Herein, isochamaejasmin was found to show similar bioactivity against Bcl-2 family proteins to the reference Bcl-2 ligand (-)-gossypol through 3D similarity search. It selectively bound to Bcl-xl and Mcl-1 with Ki values being 1.93 ± 0.13 μmol·L(-1) and 9.98 ± 0.21 μmol·L(-1), respectively. In addition, isochamaejasmin showed slight growth inhibitory activity against HL-60 with IC50 value being 50.40 ± 1.21 μmol·L(-1) and moderate growth inhibitory activity against K562 cells with IC50 value being 24.51 ± 1.62 μmol·L(-1). Furthermore, isochamaejasmin induced apoptosis of K562 cells by increasing the intracellular expression levels of proteins of the cleavage of caspase-9, caspase-3, and PARP which involved in the Bcl-2-induced apoptosis pathway. These results indicated that isochamaejasmin induces apoptosis in leukemia cells by inhibiting the activity of Bcl-2 family proteins, providing evidence for further studying the underlying anti-cancer mechanism of S. chamaejasme L.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
Apoptosis
;
drug effects
;
Biflavonoids
;
pharmacology
;
therapeutic use
;
Caspase 3
;
metabolism
;
Caspase 9
;
metabolism
;
Gossypol
;
pharmacology
;
HL-60 Cells
;
Humans
;
Inhibitory Concentration 50
;
K562 Cells
;
Leukemia
;
drug therapy
;
metabolism
;
Myeloid Cell Leukemia Sequence 1 Protein
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Poly(ADP-ribose) Polymerases
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Thymelaeaceae
;
chemistry
;
bcl-2-Associated X Protein
;
metabolism
5.Effects of Vam3 on sodium nitroprusside-induced apoptosis and SIRT1 and p53 expression in rat articular chondrocytes.
Ren-Tao JIANG ; Chun-Suo YAO ; Jin-Ye BAI ; Qi HOU
Acta Pharmaceutica Sinica 2014;49(5):608-614
This study is to investigate the effect of Vam3, a dimeric derivative of resveratrol, on SNP-induced apoptosis and its potential mechanism in rat articular chondrocytes. Isolated rat articular chondrocytes were treated with sodium nitroprusside (SNP), a NO donor, to induce apoptosis. Apoptosis percentage was evaluated by Annexin V-PI and nucleus fracture was examined by DAPI staining. Level of intracellular reactive oxygen species (ROS) was detected using 2, 7'-dichlorofluorescin diacetate (DCFH-DA) as a fluorescence probe by fluorescence microplate reader. The change in mitochondrial membrane potential was detected by TMRE staining. Expressions of SIRT1, acetylated p53 (ac-p53), cleaved caspase 9 and cleaved caspase 3 were determined by Western blotting. It showed that Vam3 up to 10 micromol x L(-1) could significantly reduce SNP-induced rat articular chondrocytes apoptosis (P < 0.01) and nucleus fracture, inhibit the increase of intracellular ROS level (P < 0.01) and reverse the decrease in mitochondrial membrane potential (P < 0.01). Simultaneously, Vam3 could upregulate the expression of SIRT1, deacetylate p53, and inhibit the cleavage of caspase 9 and caspase 3 (P < 0.01) of rat articular chondrocytes exposed to SNP. This study indicates Vam3 could protect rat articular chondrocytes against SNP-induced apoptosis, perhaps through the upregulation of SIRT1 and deacetylation of p53.
Animals
;
Apoptosis
;
drug effects
;
Arabidopsis Proteins
;
pharmacology
;
Cartilage, Articular
;
cytology
;
Caspase 3
;
metabolism
;
Caspase 9
;
metabolism
;
Cells, Cultured
;
Chondrocytes
;
cytology
;
metabolism
;
Male
;
Membrane Potential, Mitochondrial
;
drug effects
;
Nitric Oxide Donors
;
antagonists & inhibitors
;
pharmacology
;
Nitroprusside
;
pharmacology
;
Qa-SNARE Proteins
;
pharmacology
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Sirtuin 1
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism
6.Baicalin attenuates focal cerebral ischemic reperfusion injury by inhibition of protease-activated receptor-1 and apoptosis.
Qing-bo ZHOU ; Cheng-zhu DUAN ; Qing JIA ; Ping LIU ; Lu-yang LI
Chinese journal of integrative medicine 2014;20(2):116-122
OBJECTIVETo investigate the neuro-protective effects of baicalin in Wistar rats with focal cerebral ischemic reperfusion injury.
METHODSNinety adult male Wistar rats weighing 320-350 g were randomly divided into the following groups (n=5): (a) sham control group; (b) vehicle group, subjected to middle cerebral artery occlusion and received vehicle intraperitoneally; (c-e) baicalin groups, which were subjected to the middle cerebral artery occlusion and treated with baicalin 25, 50 and 100 mg/kg, respectively. The neurological scores were determined at postoperative 1, 3 and 7 d after the treatment. The expression of protease-activated receptor-1 (PAR-1), PAR-1 mRNA and Caspase-3 were determined using Western blot, reverse transcription polymerase chain reaction (RTPCR) analysis and immunohistochemistry, respectively.
RESULTSSignificant decrease was noted in the neurological score in the baicalin group compared with that of the vehicle group (P<0.01). Additionally, down-regulation of PAR-1 mRNA, PAR-1 and Caspase-3 was observed in the baicalin groups compared with those obtained from the vehicle group (P<0.01). Compared with the low-dose baicalin group (25 mg/kg), remarkable decrease was noted in neurological score, and the expression of PAR-1 mRNA, PAR-1 as well as Caspase-3 in the high-dose group (P<0.05).
CONCLUSIONBaicalin showed neuro-protective effects in focal cerebral ischemic reperfusion injury through inhibiting the expression of PAR-1 and apoptosis.
Animals ; Apoptosis ; drug effects ; Brain Ischemia ; complications ; drug therapy ; genetics ; pathology ; Caspase 3 ; metabolism ; Flavonoids ; administration & dosage ; pharmacology ; therapeutic use ; Gene Expression Regulation ; drug effects ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Wistar ; Receptor, PAR-1 ; antagonists & inhibitors ; genetics ; metabolism ; Reperfusion Injury ; complications ; drug therapy ; genetics ; pathology
7.Knockdown of Bcl-xL Enhances Growth-Inhibiting and Apoptosis-Inducing Effects of Resveratrol and Clofarabine in Malignant Mesothelioma H-2452 Cells.
Yoon Jin LEE ; In Sung HWANG ; Yong Jin LEE ; Chang Ho LEE ; Sung Ho KIM ; Hae Saeon NAM ; Young Jin CHOI ; Sang Han LEE
Journal of Korean Medical Science 2014;29(11):1464-1472
Mcl-1 and Bcl-xL, key anti-apoptotic proteins of the Bcl-2 family, have attracted attention as important molecules in the cell survival and drug resistance. In this study, we investigated whether inhibition of Bcl-xL influences cell growth and apoptosis against simultaneous treatment of resveratrol and clofarabine in the human malignant mesothelioma H-2452 cells. Resveratrol and clofarabine decreased Mcl-1 protein levels but had little effect on Bcl-xL levels. In the presence of two compounds, any detectable change in the Mcl-1 mRNA levels was not observed in RT-PCR analysis, whereas pretreatment with the proteasome inhibitor MG132 led to its accumulation to levels far above basal levels. The knockdown of Bcl-xL inhibited cell proliferation with cell accumulation at G2/M phase and the appearance of sub-G0/G1 peak in DNA flow cytometric assay. The suppression of cell growth was accompanied by an increase in the caspase-3/7 activity with the resultant cleavages of procaspase-3 and its substrate poly (ADP-ribose) polymerase, and increased percentage of apoptotic propensities in annexin V binding assay. Collectively, our data represent that the efficacy of resveratrol and clofarabine for apoptosis induction was substantially enhanced by Bcl-xL-lowering strategy in which the simultaneous targeting of Mcl-1 and Bcl-xL could be a more effective strategy for treating malignant mesothelioma.
Adenine Nucleotides/*pharmacology
;
Antimetabolites, Antineoplastic/*pharmacology
;
Apoptosis/*drug effects
;
Arabinonucleosides/*pharmacology
;
Caspase 3/metabolism
;
Caspase 7/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
G2 Phase Cell Cycle Checkpoints/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Leupeptins/pharmacology
;
Lung Neoplasms/metabolism/pathology
;
M Phase Cell Cycle Checkpoints/drug effects
;
Mesothelioma/metabolism/pathology
;
Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors/genetics/metabolism
;
RNA Interference
;
RNA, Messenger/metabolism
;
RNA, Small Interfering/metabolism
;
Stilbenes/*pharmacology
;
bcl-X Protein/antagonists & inhibitors/*genetics/*metabolism
8.Effects of monocyte chemotactic protein-3 on ICAM-1, VCAM-1, TF, and TFPI expression and apoptosis in human umbilical vein endothelial cells.
Jinsong CHEN ; Bo ZHANG ; Congze PAN ; Lei REN ; Yundai CHEN
Journal of Southern Medical University 2013;33(1):86-92
OBJECTIVETo investigate the effect of monocyte chemotactic protein-3 (MCP-3) on the expressions of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor (TF, and tissue factor pathway inhibitor (TFPI) and cell apoptosis in human umbilical vein endothelial cells (HUVECs).
METHODSCultured HUVECs were treated with MCP-3 at the optimal concentration determined previously 1 h after treatments with or without MCP-3 antibody (20 ng/ml), PI3K inhibitor, or LY-294002 (5 mmol/ml). The expressions of ICAM-1, VCAM-1, TF and TFPI were analyzed using RT-PCR and Western blot after the treatments. MCP-3 mRNA and protein expressions were detected in HUVECs exposed to 50 µg/ml ox-LDL for 24 h. The cell apoptosis and caspase-3 protein production in HUVECs treated with MCP-3 or with MCP-3 plus CCR2 antagonist for 24 h and 48 h were evaluated by flow cytometry and Western blotting.
RESULTSAt the optimal concentration of 0.3 ng/ml, MCP-3 treatment for 24 h caused significantly increased ICAM-1, VCAM-1, and TF expressions with lowered expression of TFPI in HUVECs (P<0.05), and such effects were significantly inhibited by the application of MCP-3 antibody, PI3K inhibitor, or LY-294002 (P<0.05). Ox-LDL exposure significantly increased the expression of MCP-3 in HUVECs (P<0.05). HUVECs showed a significantly increased apoptosis rate after treatment with MCP-3 or with MCP-3 plus CCR2 antagonist (P<0.05), and the apoptosis rate increased significantly as the treatment time prolonged (P<0.05); caspase-3 protein expression in the cells showed a similar pattern of alterations following the treatments.
CONCLUSIONox-LDL can induce MCP-3 expression in HUVECs. MCP-3 induces apoptosis of HUVECs and significantly affects the cellular function partially through the PI3K signaling pathway.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Adhesion ; Cells, Cultured ; Chemokine CCL7 ; pharmacology ; Chromones ; pharmacology ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Intercellular Adhesion Molecule-1 ; metabolism ; Lipoproteins ; metabolism ; Lipoproteins, LDL ; pharmacology ; Morpholines ; pharmacology ; Phosphatidylinositol 3-Kinases ; antagonists & inhibitors ; Receptors, CCR2 ; antagonists & inhibitors ; Signal Transduction ; Thromboplastin ; metabolism ; Vascular Cell Adhesion Molecule-1 ; metabolism
9.Negative regulation of NLRP3 inflammasome signaling.
Protein & Cell 2013;4(4):251-258
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identified to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.
Animals
;
Autophagy
;
Carrier Proteins
;
antagonists & inhibitors
;
metabolism
;
Caspase 1
;
metabolism
;
Humans
;
Inflammasomes
;
metabolism
;
Interferon Type I
;
metabolism
;
MicroRNAs
;
metabolism
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Nitric Oxide
;
metabolism
;
Signal Transduction
;
T-Lymphocytes
;
immunology
;
metabolism
10.Effects of neuroactive steroid allopregnanolone on the damage of cortical neurons.
Xian-Hui LI ; Xin-Chang ZHANG ; Gang WANG ; Hai-Ling LIU ; Shi-Hai XIA
Chinese Journal of Applied Physiology 2011;27(2):175-178
OBJECTIVETo investigate the protective mechanism of neuroactive steroid allopregnanolone on N-methyl-D-aspartate (NMDA) induced toxicity in primary mouse cortical neurons.
METHODSPrimary cultured mouse cortical neurons were subjected to allopregnanolone, the expression of beta-aminobutyric acid receptor beta2 subunit (beta2-GABA-R) mRNAs was detected by RT-PCR and Akt phosphorylation was assayed by Western blot using Akt-phosphoserine 473-specific antibody. After the cultured mouse cortical neurons were pretreated with or without allopregnanolone prior to treatment with NMDA , DNA isolated was analyzed by agarose gel electrophoresis and proteins collected were analyzed by Western blot with anti-cleaved-PARP, anti-cleaved caspase-3, and anti-cleaved caspase-9 antibodies.
RESULTSWhen cultured mouse cortical neurons were exposed to allopregnanolone both the expression of beta2-GABA-R mRNAs and Akt phosphorylation increased. Allopregnanolone inhibited the NMDA-induced apoptosis and decreased the level of active-PARP, active-caspase-3 and active-caspase-9 notably at a final concentration of 5 x 10(6) mol/L.
CONCLUSIONPretreatment with allopregnanolone may be neuroprotective on NMDA-induced neuronal cells apoptosis by increasing beta2-GABA-R expression and Akt phosphorylation.
Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cerebral Cortex ; cytology ; Mice ; N-Methylaspartate ; antagonists & inhibitors ; toxicity ; Neurons ; cytology ; Neuroprotective Agents ; pharmacology ; Poly (ADP-Ribose) Polymerase-1 ; Poly(ADP-ribose) Polymerases ; metabolism ; Pregnanolone ; pharmacology ; Primary Cell Culture ; RNA, Messenger ; genetics ; metabolism ; Receptors, GABA-B ; genetics ; metabolism

Result Analysis
Print
Save
E-mail