1.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
2.Abnormal collagen deposition mediated by cartilage oligomeric matrix protein in the pathogenesis of oral submucous fibrosis.
Yafei XIONG ; Xuechun LI ; Bincan SUN ; Jie ZHANG ; Xiaoshan WU ; Feng GUO
International Journal of Oral Science 2025;17(1):25-25
Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis (OSF). However, the precise characteristics and underlying mechanisms remain unclear, impeding the advancement of potential therapeutic approaches. Here, we observed that collagen I, the main component of the extracellular matrix, first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed. Using RNA-seq and Immunofluorescence in OSF specimens, we screened the cartilage oligomeric matrix protein (COMP) responsible for the abnormal collagen accumulation. Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo. In comparison, both COMP and collagen I were upregulated under arecoline stimulation in wild-type mice. Human oral buccal mucosal fibroblasts (hBMFs) also exhibited increased secretion of COMP and collagen I after stimulation in vitro. COMP knockdown in hBMFs downregulates arecoline-stimulated collagen I secretion. We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation, of which COMP-positive fibroblasts secrete more collagen I. Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices (FACIT) in the collagen network, we further screened and identified collagen XIV, a FACIT member, co-localizing with both COMP and collagen I. Collagen XIV expression increased under arecoline stimulation in wild-type mice, whereas it was hardly expressed in the Comp-/- mice, even with under stimulation. In summary, we found that COMP may mediates abnormal collagen I deposition by functions with collagen XIV during the progression of OSF, suggesting its potential to be targeted in treating OSF.
Oral Submucous Fibrosis/pathology*
;
Cartilage Oligomeric Matrix Protein/genetics*
;
Animals
;
Mice
;
Humans
;
Fibroblasts/metabolism*
;
Collagen Type I/metabolism*
;
Arecoline/pharmacology*
;
Mouth Mucosa/metabolism*
;
Cells, Cultured
;
Fluorescent Antibody Technique
3.Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies.
Yuangang WU ; Jiao LI ; Yi ZENG ; Wenchen PU ; Xiaoyu MU ; Kaibo SUN ; Yong PENG ; Bin SHEN
International Journal of Oral Science 2022;14(1):40-40
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Apoptosis
;
Cartilage/pathology*
;
Cartilage, Articular/metabolism*
;
Cell Communication
;
Chondrocytes/metabolism*
;
Exosomes/pathology*
;
Humans
;
Osteoarthritis/therapy*
4.Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice.
Yumei LAI ; Wei ZHENG ; Minghao QU ; Christopher C XIAO ; Sheng CHEN ; Qing YAO ; Weiyuan GONG ; Chu TAO ; Qinnan YAN ; Peijun ZHANG ; Xiaohao WU ; Guozhi XIAO
International Journal of Oral Science 2022;14(1):33-33
The progressive destruction of condylar cartilage is a hallmark of the temporomandibular joint (TMJ) osteoarthritis (OA); however, its mechanism is incompletely understood. Here, we show that Kindlin-2, a key focal adhesion protein, is strongly detected in cells of mandibular condylar cartilage in mice. We find that genetic ablation of Kindlin-2 in aggrecan-expressing condylar chondrocytes induces multiple spontaneous osteoarthritic lesions, including progressive cartilage loss and deformation, surface fissures, and ectopic cartilage and bone formation in TMJ. Kindlin-2 loss significantly downregulates the expression of aggrecan, Col2a1 and Proteoglycan 4 (Prg4), all anabolic extracellular matrix proteins, and promotes catabolic metabolism in TMJ cartilage by inducing expression of Runx2 and Mmp13 in condylar chondrocytes. Kindlin-2 loss decreases TMJ chondrocyte proliferation in condylar cartilages. Furthermore, Kindlin-2 loss promotes the release of cytochrome c as well as caspase 3 activation, and accelerates chondrocyte apoptosis in vitro and TMJ. Collectively, these findings reveal a crucial role of Kindlin-2 in condylar chondrocytes to maintain TMJ homeostasis.
Aggrecans/metabolism*
;
Animals
;
Cartilage, Articular/metabolism*
;
Chondrocytes/pathology*
;
Cytoskeletal Proteins/metabolism*
;
Mice
;
Muscle Proteins/metabolism*
;
Osteoarthritis/pathology*
;
Temporomandibular Joint/pathology*
5.Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1.
Yu JIN ; Zhen LIU ; Zhenxia LI ; Hairui LI ; Cheng ZHU ; Ruomei LI ; Ting ZHOU ; Bing FANG
International Journal of Oral Science 2022;14(1):34-34
Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.
Cartilage, Articular/pathology*
;
Chondrocytes/metabolism*
;
Down-Regulation
;
Epigenesis, Genetic
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism*
;
Osteoarthritis/pathology*
;
RNA, Small Interfering/pharmacology*
6.The minor collagens in articular cartilage.
Yunyun LUO ; Dovile SINKEVICIUTE ; Yi HE ; Morten KARSDAL ; Yves HENROTIN ; Ali MOBASHERI ; Patrik ÖNNERFJORD ; Anne BAY-JENSEN
Protein & Cell 2017;8(8):560-572
Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.
Aggrecans
;
chemistry
;
genetics
;
metabolism
;
Animals
;
Biomarkers
;
metabolism
;
Cartilage, Articular
;
chemistry
;
metabolism
;
pathology
;
Collagen
;
chemistry
;
classification
;
genetics
;
metabolism
;
Extracellular Matrix Proteins
;
chemistry
;
genetics
;
metabolism
;
Gene Expression
;
Humans
;
Osteoarthritis
;
diagnosis
;
genetics
;
metabolism
;
pathology
;
Protein Isoforms
;
chemistry
;
classification
;
genetics
;
metabolism
7.Inflammatory cytokines and oxidative stress markers in the inhibition of osteoarthritis by curcumin.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):461-468
To observe the influence of matrix metalloproteinases-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), CD47, L-selectin and advanced oxidation proteinproducts (AOPP) in osteoarthritis and the intervention of curcumin.A total of 20 male C57BL/6 mice (10.05-15.00 g) were randomly divided into control group, OA group, Cur25 group and Cur50 group (intraperitoneal injected 25 μmol/L or 50 μmol/L of curcumin everyday after modeling). After 4 weeks treatment, we observed the morphological changes of the gross specimen by immunohistochemical method, and observed the ultrastructure of cartilage tissue under electron microscope. The expression of MMP-2, MCP-1 and CD47 were detected by western blotting, and L-selectin and AOPP were detected by ELISA and spectrophotometer, respectively.In the cartilage tissue morphology, the chondrocytes of OA group showed obvious change, while Cur25 and Cur50 groups maintained the good cartilage cell membrane intact. Compared with control group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in OA group, Cur25 group and Cur50 group were increased (all<0.05), while CD47 levels were decreased (all<0.05). Compared with OA group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in Cur25 group and Cur50 group were decreased (all<0.05), while CD47 levels were increased (all<0.05), and such changes were more significant in Cur50 group (all<0.05).The MMP-2, MCP-1, CD47, L-selectin and AOPP are closely associated with the pathology course of OA. Curcumin has protection effect on cartilage, which can relieve joint cartilage degeneration, reduce cartilage inflammation and increase the metabolic activity of chondrocytes.
Advanced Oxidation Protein Products
;
metabolism
;
Animals
;
Biomarkers
;
CD47 Antigen
;
metabolism
;
Cartilage
;
chemistry
;
drug effects
;
pathology
;
Chemokine CCL2
;
metabolism
;
Chondrocytes
;
drug effects
;
pathology
;
Curcumin
;
administration & dosage
;
pharmacology
;
Cytokines
;
L-Selectin
;
metabolism
;
Male
;
Matrix Metalloproteinase 2
;
metabolism
;
Mice, Inbred C57BL
;
Osteoarthritis
;
genetics
;
pathology
;
physiopathology
;
Oxidative Stress
8.Protective effect of diosgenin on chondrocytes mediated by JAK2/STAT3 signaling pathway in mice with osteoarthritis.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):453-460
To investigate the effect of diosgenin (Dgn) on chondrocytes and its relation to JAK2/STAT3 signaling pathway in mice with osteoarthritis (OA).Fifteen male C57BL/6 mice were randomly divided into three groups:control group, OA group and OA+Dgn group. After 4 weeks of treatment, the histopathological changes of cartilage tissue were observed by toluidine blue staining under light microscopy and the ultrastructure of chondrocytes was observed under electron microscopy. The primarily cultured chondrocytes of OA mice were randomly divided into 4 groups:(1) OA group, (2) Dgn group, (3) Dgn+AG490 group, (4) AG490 group. The expression of p-JAK2, p-STAT3, Bax, succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) were detected by Western blotting, and superoxide dismutase (SOD) was detected using colorimetric method.The morphological observation showed that the chondrocytes of OA group presented considerable pathological changes, while the chondrocytes in OA+Dgn group maintained intact membrane. Electron microscopy observation found obvious injury in cartilage tissues of OA group, while that in OA+Dgn group remained smooth. Compared with OA group, the expressions of p-JAK2 and p-STAT3 in chondrocytes of Dgn group were increased (all<0.05), and the expressions of Bax protein, SDH, COX and SOD were decreased (all<0.05). While compared with Dgn group, the expressions of p-JAK2, p-STAT3, SDH, COX and SOD in chondrocytes of Dgn+AG490 group were decreased (all<0.05), and the expression of Bax protein was increased (<0.05).Diosgenin can inhibit apoptosis and increase mitochondrial oxidative stress capacity of chondrocytes in mice with osteoarthritis, which is closely related to the activation of JAK2/STAT3 signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
Cartilage
;
drug effects
;
pathology
;
Chondrocytes
;
chemistry
;
drug effects
;
pathology
;
Diosgenin
;
pharmacology
;
Electron Transport Complex IV
;
metabolism
;
Janus Kinase 2
;
drug effects
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
drug effects
;
genetics
;
Osteoarthritis
;
genetics
;
physiopathology
;
Oxidative Stress
;
drug effects
;
STAT3 Transcription Factor
;
drug effects
;
Signal Transduction
;
Succinate Dehydrogenase
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Tyrphostins
;
pharmacology
;
bcl-2-Associated X Protein
;
metabolism
9.Protective effect of LR-90 on articular cartilage in rabbit model of osteoarthritis.
Kai HUANG ; Jianfang ZHANG ; Junming WAN ; Jianwei LU ; Yang GAO
Journal of Zhejiang University. Medical sciences 2016;45(2):187-194
OBJECTIVETo investigate the protective effect of LR-90 on articular cartilage in rabbit model of osteoarthritis.
METHODSThe cultured rabbits chondrocytes were assigned to be treated with IL-1β (10ng/ml) or IL-1β (10ng/ml)+LR-90 (50 mg/L). The mRNA expression of MMP-13, ADAMTS-5, aggrecan and collagen II in chondrocytes were assessed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Twenty male New Zealand white rabbits underwent bilateral anterior cruciate ligament transection (ACLT) to establish a animal model of osteoarthritis. Four weeks after model established, on the basis of randomization one knee of each rabbit was treated with 50 mg/L LR-90 in normal saline (NS) (experimental group) and the other knee was treated with same volume of NS (control group), 1/week × 5. Nine weeks after ACLT all rabbits were sacrificed and the knee joints were evaluated by gross morphology and histology. The mRNA expression of IL-1β, MMP-13, ADAMTS-5, aggrecan and collagen Ⅱ in articular cartilage was analyzed by RT-PCR.
RESULTSGross morphology and Mankin histological evaluation showed that the extent and grade of cartilage damage in the experimental group were less severe than those in the control group.Compared to IL-1β group, LR-90 treatment suppressed the mRNA expression of MMP-13 and ADAMTS-5, and enhanced aggrecan and collagen Ⅱ mRNA expression. Consistent with the in vitro results, the intraarticular LR-90 administration suppressed the mRNA expression of IL-1β,MMP-13 and ADAMTS-5 (all P<0.01), while enhanced mRNA expression of aggrecan and collagen Ⅱ in cartilage (all P<0.01).
CONCLUSIONLR-90 protects against cartilage degradation and inhibits the progression of osteoarthritis in rabbit mode1 of osteoarthritis, which is associated with the suppressing IL-1β, MMP-13, ADAMTS-5 and promoting aggrecan and collagen Ⅱ mRNA expression in cartilage.
ADAM Proteins ; metabolism ; Aggrecans ; metabolism ; Animals ; Anterior Cruciate Ligament ; surgery ; Butyrates ; pharmacology ; Cartilage, Articular ; metabolism ; pathology ; Cells, Cultured ; Chondrocytes ; metabolism ; Collagen Type II ; metabolism ; Disease Models, Animal ; Injections, Intra-Articular ; Interleukin-1beta ; pharmacology ; Male ; Matrix Metalloproteinase 13 ; metabolism ; Osteoarthritis ; drug therapy ; Rabbits
10.Effect of eletroacupuncture with close-to-bone needling treatment on expression of Sox9, VEGF and ColX in impaired cartilage of rabbits with knee osteoarthritis.
Fei LIU ; Xue-Zhi LI ; Ni-Ni FU ; Xiao-Fang XI ; Yi REN ; Xiao-Guang YANG ; Yu ZHANG
Journal of Southern Medical University 2016;36(7):997-1003
OBJECTIVETo investigate the effect of eletroacupuncture with close-to-bone needling treatment on expression of Sox9, vascular endothelial growth factor (VEGF) and type X collagen (ColX) in impaired cartilage of rabbits with knee osteoarthritis (KOA) and explore its possible mechanisms.
METHODSForty New Zealand rabbits were randomized equally into normal control group, KOA model group, eletroacupuncture with close-to-bone needling group (CN group), and normal thrust needing group (NTN group). In the latter 3 groups, KOA was induced by Hulth-Telhag treatment and evaluated with X-ray examination, and 6 weeks after the modeling, eletroacupuncture for 20 min was administered in CN and NTN groups at the acupoints "Zusanli", "Waixiyan", "Neixiyan", "Liangqiu" and "Yinlingquan" in the left knee joints once daily for 5 days as a treatment cycle. After 5 treatment cycles, the rabbits were examined for behavioral changes, cartilage morphology, and Mankin scores; The protein and mRNA expressions of S0x9, VEGF, and ColX were examined using Westen blotting, immunohistochemistry, and RT-PCR as appropriate.
RESULTSThe rabbits in the model, CN and NTN groups showed significant changes in behaviors and cartilage histomorphology after the modeling and after the treatments. HE staining showed that cartilage injury was repaired and tended to recovery in CN and NTN groups. The cartilage pathologies was severer in the model group than in the normal control, CN and NTN groups (P<0.01); Sox9 protein increased and VEGF mRNA level decreased in CN and NTN groups after treatment as compared with those in the model group (P<0.01).
CONCLUSIONEletroacupuncture with close-to-bone needling can effectively improve KOA in rabbits probably by enhancing Sox9 and reducing VEGF and ColX expressions in the cartilage to inhibit hypertrophic differentiation of the chondrocytes, maintain chondrogenic phenotype and repair cartilage cells.
Acupuncture Points ; Animals ; Cartilage, Articular ; metabolism ; pathology ; Cell Differentiation ; Chondrocytes ; cytology ; Chondrogenesis ; Collagen Type X ; metabolism ; Electroacupuncture ; Knee Joint ; physiopathology ; Osteoarthritis, Knee ; therapy ; Rabbits ; SOX9 Transcription Factor ; metabolism ; Vascular Endothelial Growth Factor A ; metabolism

Result Analysis
Print
Save
E-mail