1.Applicatoin of chitosan-based hydrogel in oral tissue engineering.
Yujie WANG ; Jielin ZOU ; Mingxuan CAI ; Yifan WANG ; Jing MAO ; Xin SHI
Journal of Central South University(Medical Sciences) 2023;48(1):138-147
Pulpitis, periodontitis, jaw bone defect, and temporomandibular joint damage are common oral and maxillofacial diseases in clinic, but traditional treatments are unable to restore the structure and function of the injured tissues. Due to their good biocompatibility, biodegradability, antioxidant effect, anti-inflammatory activity, and broad-spectrum antimicrobial property, chitosan-based hydrogels have shown broad applicable prospects in the field of oral tissue engineering. Quaternization, carboxymethylation, and sulfonation are common chemical modification strategies to improve the physicochemical properties and biological functions of chitosan-based hydrogels, while the construction of hydrogel composite systems via carrying porous microspheres or nanoparticles can achieve local sequential delivery of diverse drugs or bioactive factors, laying a solid foundation for the well-organized regeneration of defective tissues. Chemical cross-linking is commonly employed to fabricate irreversible permanent chitosan gels, and physical cross-linking enables the formation of reversible gel networks. Representing suitable scaffold biomaterials, several chitosan-based hydrogels transplanted with stem cells, growth factors or exosomes have been used in an attempt to regenerate oral soft and hard tissues. Currently, remarkable advances have been made in promoting the regeneration of pulp-dentin complex, cementum-periodontium-alveolar bone complex, jaw bone, and cartilage. However, the clinical translation of chitosan-based hydrogels still encounters multiple challenges. In future, more in vivo clinical exploration under the conditions of oral complex microenvironments should be performed, and the combined application of chitosan-based hydrogels and a variety of bioactive factors, biomaterials, and state-of-the-art biotechnologies can be pursued in order to realize multifaceted complete regeneration of oral tissue.
Chitosan/chemistry*
;
Tissue Engineering
;
Hydrogels/chemistry*
;
Biocompatible Materials/chemistry*
;
Cartilage
;
Tissue Scaffolds/chemistry*
2.Application of microcarrier technology in cartilage repairing: a review.
Yuyan CHEN ; Tingchun SHI ; Xiuyan YUE
Chinese Journal of Biotechnology 2022;38(3):925-942
Cartilage has poor self-recovery because of its characteristics of no blood vessels and high extracellular matrix. In clinical treatment, physical therapy or drug therapy is usually used for mild cartilage defects, and surgical treatment is needed for severe ones. In recent years, cartilage tissue engineering technology provides a new way for the treatment of cartilage defects. Compared with the traditional surgical treatment, cartilage tissue engineering technology has the advantages of small wound and good recovery. The application of microcarrier technology in the design of tissue engineering scaffolds further expands the function of scaffolds and promotes cartilage regeneration. This review summarized the main preparation methods and development of microcarrier technology in recent years. Subsequently, the properties and specific application scenarios of microcarriers with different materials and functions were introduced according to the materials and functions of microcarriers used in cartilage repair. Based on our research on osteochondral integrated layered scaffolds, we proposed an idea of optimizing the performance of layered scaffolds through microcarriers, which is expected to prepare bionic scaffolds that are more suitable for the structural characteristics of natural cartilage.
Cartilage
;
Extracellular Matrix/chemistry*
;
Technology
;
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
3.Subchondral drilling method combined with gum-bletilla complex to repair articular cartilage defects.
Yong HUANG ; Xin-Ling WANG ; Heng QIU ; Yi-Cheng XIAO ; Zong-Hong WU ; Jian XU
China Journal of Chinese Materia Medica 2018;43(4):813-819
Two types(A model and B model) of articular cartilage defect models were prepared by using adult New Zealand white rabbits. A model group was applied by drilling without through subchondral bone, whose right joint was repaired by composite scaffolds made by seed cell, gum-bletilla as well as Pluronic F-127, and left side was blank control. B model group was applied by subchondral drilling method, whose right joint was repaired by using composite scaffolds made by gum-bletilla and Pluronic F-127 without seed cells, and left side was blank control. Autogenous contrast was used in both model types. In addition, another group was applied with B model type rabbits, which was repaired with artificial complex material of Pluronic F-127 in both joint sides. 4, 12 and 24 weeks after operation, the animals were sacrificed and the samples were collected from repaired area for staining with HE, typeⅡcollagen immunohistochemical method, Alcian blue, and toluidine blue, and then were observed with optical microscope. Semi-quantitative scores were graded by referring to Wakitanis histological scoring standard to investigate the histomorphology of repaired tissue. Hyaline cartilage repairing was achieved in both Group A and Group B, with satisfactory results. There were no significant differences on repairing effects for articular cartilage defects between composite scaffolds made by seed cell, gum-bletilla and Pluronic F-127, and the composite scaffolds made by gum-bletilla and Pluronic F-127 without seed cell. Better repairing effects for articular cartilage defects were observed in groups with use of gum-bletilla, indicating that gum-bletilla is a vital part in composite scaffolds material.
Animals
;
Arthroplasty, Subchondral
;
Cartilage, Articular
;
surgery
;
Cells, Cultured
;
Orchidaceae
;
chemistry
;
Plant Gums
;
chemistry
;
Poloxamer
;
Rabbits
;
Tissue Engineering
;
Tissue Scaffolds
4.Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate–Gelatin Hydrogel for Tissue Engineering
Sumi BANG ; Ui Won JUNG ; Insup NOH
Tissue Engineering and Regenerative Medicine 2018;15(1):25-35
Novel hydrogel composed of both chondroitin sulfate (CS) and gelatin was developed for better cellular interaction through two step double crosslinking of N-(3-diethylpropyl)-N-ethylcarbodiimide hydrochloride (EDC) chemistries and then click chemistry. EDC chemistry was proceeded during grafting of amino acid dihydrazide (ADH) to carboxylic groups in CS and gelatin network in separate reactions, thus obtaining CS–ADH and gelatin–ADH, respectively. CS–acrylate and gelatin–TCEP was obtained through a second EDC chemistry of the unreacted free amines of CS–ADH and gelatin–ADH with acrylic acid and tri(carboxyethyl)phosphine (TCEP), respectively. In situ CS–gelatin hydrogel was obtained via click chemistry by simple mixing of aqueous solutions of both CS–acrylate and gelatin–TCEP. ATR-FTIR spectroscopy showed formation of the new chemical bonds between CS and gelatin in CS–gelatin hydrogel network. SEM demonstrated microporous structure of the hydrogel. Within serial precursor concentrations of the CS–gelatin hydrogels studied, they showed trends of the reaction rates of gelation, where the higher concentration, the quicker the gelation occurred. In vitro studies, including assessment of cell viability (live and dead assay), cytotoxicity, biocompatibility via direct contacts of the hydrogels with cells, as well as measurement of inflammatory responses, showed their excellent biocompatibility. Eventually, the test results verified a promising potency for further application of CS–gelatin hydrogel in many biomedical fields, including drug delivery and tissue engineering by mimicking extracellular matrix components of tissues such as collagen and CS in cartilage.
Amines
;
Cartilage
;
Cell Survival
;
Chemistry
;
Chondroitin Sulfates
;
Chondroitin
;
Click Chemistry
;
Collagen
;
Extracellular Matrix
;
Gelatin
;
Hydrogel
;
Hydrogels
;
In Vitro Techniques
;
Spectrum Analysis
;
Tissue Engineering
;
Transplants
5.The minor collagens in articular cartilage.
Yunyun LUO ; Dovile SINKEVICIUTE ; Yi HE ; Morten KARSDAL ; Yves HENROTIN ; Ali MOBASHERI ; Patrik ÖNNERFJORD ; Anne BAY-JENSEN
Protein & Cell 2017;8(8):560-572
Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.
Aggrecans
;
chemistry
;
genetics
;
metabolism
;
Animals
;
Biomarkers
;
metabolism
;
Cartilage, Articular
;
chemistry
;
metabolism
;
pathology
;
Collagen
;
chemistry
;
classification
;
genetics
;
metabolism
;
Extracellular Matrix Proteins
;
chemistry
;
genetics
;
metabolism
;
Gene Expression
;
Humans
;
Osteoarthritis
;
diagnosis
;
genetics
;
metabolism
;
pathology
;
Protein Isoforms
;
chemistry
;
classification
;
genetics
;
metabolism
6.Inhibitory effects of SRT1720 on the apoptosis of rabbit chondrocytes by activating SIRT1 via p53/bax and NF-κB/PGC-1α pathways.
Bi LIU ; Ming LEI ; Tao HU ; Fei YU ; De-Ming XIAO ; Hao KANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):350-355
SRT1720, a new discovered drug, was reported to activate silent information regulator 1 (SIRT1) and inhibit the chondrocyte apoptosis. However, the underlying mechanism remains elusive. In the present study, the chondrocytes were extracted from the cartilage tissues of New Zealand white rabbits, cultured in the presence of sodium nitroprusside (SNP) (2.5 mmol/L) and divided into five groups: 1, 5, 10, and 20 μmol/L SRT1720 groups and blank control group (0 μmol/L SRT1720). MTT assay was used to detect the chondrocyte viability and proliferation, and DAPI staining and flow cytometry to measure the chondrocyte apoptosis. The expression levels of SIRT1, p53, NF-κB/p65, Bax, and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) were detected by Western blotting and the expression levels of SIRT1, type II collagen, and aggrecan mRNA by RT-PCR. The results showed that in the SRT1720-treated groups, the nuclei of chondrocytes were morphologically intact and had uniform chromatin. In the blank control group, nuclear rupture into debris was observed in chondrocytes. With the SRT1720 concentration increasing, the chondrocyte viability increased, the apoptosis rate decreased, the protein expression levels of SIRT1 and PGC-1α and the mRNA expression levels of type II collagen and aggrecan increased ({ptP}<0.05), and the expression levels of p53, NF-κB and bax decreased (P<0.05). It was suggested that SRT1720 inhibits chondrocyte apoptosis by activating the expression of SIRT1 via p53/bax and NF-κB/PGC-1α pathways.
Aggrecans
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Cartilage, Articular
;
cytology
;
drug effects
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Chondrocytes
;
cytology
;
drug effects
;
metabolism
;
Chromatin
;
chemistry
;
drug effects
;
metabolism
;
Collagen Type II
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Heterocyclic Compounds, 4 or More Rings
;
pharmacology
;
Nitroprusside
;
toxicity
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
genetics
;
metabolism
;
Primary Cell Culture
;
Rabbits
;
Signal Transduction
;
drug effects
;
genetics
;
Sirtuin 1
;
genetics
;
metabolism
;
Transcription Factor RelA
;
genetics
;
metabolism
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
7.Anti-inflammatory effect of egg white-chalcanthite and purple bamboo salts mixture on arthritis induced by monosodium iodoacetate in Sprague-Dawley rats.
Tae Hee LEE ; Hyun Kyung SONG ; Ja Young JANG ; Dong Yoon KIM ; Hyun Kyung PARK ; Eun A CHOI ; Beom Seok HAN
Laboratory Animal Research 2016;32(2):91-98
The aim of this study is to investigate the potential of anti-osteoarthritis effects on egg white-chalcanthite (EC), purple bamboo salts (PBS), and a mixture of EC and PBS (EC+PBS). EC is a mixture of egg white and pulverized chalcanthite. PBS has been widely used as one of functional foods in Korea and shows unique features compared with common salt. Osteoarthritis was induced by intra-articular injection of monosodium iodoacetate (MIA, 4mg/kg bw) in Sprague-Dawley (SD) rats. Test substances were administered once daily for 6 weeks at doses of 10 mg EC, EC+100 mg PBS, EC+200 mg PBS before and after MIA injection. Each substance was assessed by blood chemistry parameters, and by serum cytokines including IL-1β and IL-6, and nitric oxide (NO) and prostaglandin-E2 (PGE2). Structural changes of articular cartilage were also evaluated by histopathological examination. As a result, body weight and blood chemistry parameter were not different in all experimental groups. EC+PBS mixture reduced the production of PGE2, NO, IL-1β, and IL-6. In histological grade of osteoarthritis, EC+PBS mixture had a tendency to ameliorate damage of articular cartilage induced by MIA in a dose-dependent manner. In conclusion, EC+PBS mixture was demonstrated to have a potential for anti-inflammatory effect against osteoarthritis induced by MIA in a dose-dependent manner.
Animals
;
Arthritis*
;
Body Weight
;
Cartilage, Articular
;
Chemistry
;
Cytokines
;
Dinoprostone
;
Egg White
;
Functional Food
;
Injections, Intra-Articular
;
Interleukin-6
;
Korea
;
Nitric Oxide
;
Osteoarthritis
;
Ovum*
;
Rats
;
Rats, Sprague-Dawley*
;
Salts*
8.Inflammatory cytokines and oxidative stress markers in the inhibition of osteoarthritis by curcumin.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):461-468
To observe the influence of matrix metalloproteinases-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), CD47, L-selectin and advanced oxidation proteinproducts (AOPP) in osteoarthritis and the intervention of curcumin.A total of 20 male C57BL/6 mice (10.05-15.00 g) were randomly divided into control group, OA group, Cur25 group and Cur50 group (intraperitoneal injected 25 μmol/L or 50 μmol/L of curcumin everyday after modeling). After 4 weeks treatment, we observed the morphological changes of the gross specimen by immunohistochemical method, and observed the ultrastructure of cartilage tissue under electron microscope. The expression of MMP-2, MCP-1 and CD47 were detected by western blotting, and L-selectin and AOPP were detected by ELISA and spectrophotometer, respectively.In the cartilage tissue morphology, the chondrocytes of OA group showed obvious change, while Cur25 and Cur50 groups maintained the good cartilage cell membrane intact. Compared with control group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in OA group, Cur25 group and Cur50 group were increased (all<0.05), while CD47 levels were decreased (all<0.05). Compared with OA group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in Cur25 group and Cur50 group were decreased (all<0.05), while CD47 levels were increased (all<0.05), and such changes were more significant in Cur50 group (all<0.05).The MMP-2, MCP-1, CD47, L-selectin and AOPP are closely associated with the pathology course of OA. Curcumin has protection effect on cartilage, which can relieve joint cartilage degeneration, reduce cartilage inflammation and increase the metabolic activity of chondrocytes.
Advanced Oxidation Protein Products
;
metabolism
;
Animals
;
Biomarkers
;
CD47 Antigen
;
metabolism
;
Cartilage
;
chemistry
;
drug effects
;
pathology
;
Chemokine CCL2
;
metabolism
;
Chondrocytes
;
drug effects
;
pathology
;
Curcumin
;
administration & dosage
;
pharmacology
;
Cytokines
;
L-Selectin
;
metabolism
;
Male
;
Matrix Metalloproteinase 2
;
metabolism
;
Mice, Inbred C57BL
;
Osteoarthritis
;
genetics
;
pathology
;
physiopathology
;
Oxidative Stress
9.Protective effect of diosgenin on chondrocytes mediated by JAK2/STAT3 signaling pathway in mice with osteoarthritis.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):453-460
To investigate the effect of diosgenin (Dgn) on chondrocytes and its relation to JAK2/STAT3 signaling pathway in mice with osteoarthritis (OA).Fifteen male C57BL/6 mice were randomly divided into three groups:control group, OA group and OA+Dgn group. After 4 weeks of treatment, the histopathological changes of cartilage tissue were observed by toluidine blue staining under light microscopy and the ultrastructure of chondrocytes was observed under electron microscopy. The primarily cultured chondrocytes of OA mice were randomly divided into 4 groups:(1) OA group, (2) Dgn group, (3) Dgn+AG490 group, (4) AG490 group. The expression of p-JAK2, p-STAT3, Bax, succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) were detected by Western blotting, and superoxide dismutase (SOD) was detected using colorimetric method.The morphological observation showed that the chondrocytes of OA group presented considerable pathological changes, while the chondrocytes in OA+Dgn group maintained intact membrane. Electron microscopy observation found obvious injury in cartilage tissues of OA group, while that in OA+Dgn group remained smooth. Compared with OA group, the expressions of p-JAK2 and p-STAT3 in chondrocytes of Dgn group were increased (all<0.05), and the expressions of Bax protein, SDH, COX and SOD were decreased (all<0.05). While compared with Dgn group, the expressions of p-JAK2, p-STAT3, SDH, COX and SOD in chondrocytes of Dgn+AG490 group were decreased (all<0.05), and the expression of Bax protein was increased (<0.05).Diosgenin can inhibit apoptosis and increase mitochondrial oxidative stress capacity of chondrocytes in mice with osteoarthritis, which is closely related to the activation of JAK2/STAT3 signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
Cartilage
;
drug effects
;
pathology
;
Chondrocytes
;
chemistry
;
drug effects
;
pathology
;
Diosgenin
;
pharmacology
;
Electron Transport Complex IV
;
metabolism
;
Janus Kinase 2
;
drug effects
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
drug effects
;
genetics
;
Osteoarthritis
;
genetics
;
physiopathology
;
Oxidative Stress
;
drug effects
;
STAT3 Transcription Factor
;
drug effects
;
Signal Transduction
;
Succinate Dehydrogenase
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Tyrphostins
;
pharmacology
;
bcl-2-Associated X Protein
;
metabolism
10.Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique.
Xinning YU ; Jinghua FANG ; Jianyang LUO ; Xianyan YANG ; Dongshuang HE ; Zhongru GOU ; Xuesong DAI
Journal of Zhejiang University. Medical sciences 2016;45(2):126-131
OBJECTIVETo fabricate organic-inorganic composite tissue engineering scaffolds for reconstructing calcified cartilage layer based on three-dimensional (3D) printing technique.
METHODSThe scaffolds were developed by 3D-printing technique with highly bioactive calcium-magnesium silicate ultrafine particles of 1%, 3% and 5% of mass fraction, in which the organic phases were composed of type I collagen and sodium hyaluronate. The 3D-printed scaffolds were then crosslinked and solidified by alginate and CaCl₂ aerosol. The pore size and distribution of inorganic phase were observed with scanning electron microscope (SEM); the mechanical properties were tested with universal material testing machine, and the porosity of scaffolds was also measured.
RESULTSPore size was approximately (212.3 ± 34.2) μm with a porosity of (48.3 ± 5.9)%, the compressive modulus of the scaffolds was (7.2 ± 1.2) MPa, which was irrelevant to the percentage changes of calcium-magnesium silicate, the compressive modulus was between that of cartilage and subchondral bone.
CONCLUSIONThe porous scaffolds for calcified cartilage layer have been successfully fabricated, which would be used for multi-layered composite scaffolds in osteochondral injury.
Bioprinting ; Cartilage ; growth & development ; Materials Testing ; Porosity ; Printing, Three-Dimensional ; Tissue Engineering ; methods ; Tissue Scaffolds ; chemistry

Result Analysis
Print
Save
E-mail