1.Resveratrol Attenuates Inflammation in Acute Lung Injury through ROS-Triggered TXNIP/NLRP3 Pathway.
Wen-Han HUANG ; Kai-Ying FAN ; Yi-Ting SHENG ; Wan-Ru CAI
Chinese journal of integrative medicine 2025;31(12):1078-1086
OBJECTIVE:
To evaluate the protective effects of resveratrol against acute lung injury (ALI) and investigate the potential mechanisms underlying the reactive oxygen species (ROS)-triggered thioredoxin-interacting protein (TXNIP)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway.
METHODS:
C57BL/6 mice and J774A.1 cells were selected as the research subjects. Thirty Mice were randomly divided into 5 groups of 6 in each group: control with 0.9% saline, 5 mg/kg lipopolysaccharide (LPS) 24 h, 25 mg/kg resveratrol + 5 mg/kg LPS, 100 mg/kg resveratrol + 5 mg/kg LPS, and 4 mg/kg NLRP3 inhibitor CY-09 + 5 mg/kg LPS. For cell stimulation, cells were pretreated with 5 and 20 µmol/L resveratrol for 2 h, and stimulated with or without 1 µg/mL LPS and 3 mmol/L ATP for 2 h. The antioxidant N-acetyl-L-cysteine (NAC, 2 µmol/L) was used as the positive control group. Hematoxylin and eosin staining was used to evaluate the degree of lung LPS-induced tissue damage, and enzyme-linked immunosorbent assay was used to evaluate the contents of interleukin-1 β (IL-1 β) and IL-18 in the serum and cell supernatant. ROS and malondialdehyde (MDA) levels in the lung tissue were detected using the corresponding kits. Western blotting was used to detect the expressions of TXNIP, high-mobility group box 1 (HMGB1), NLRP3, as well as cysteine-aspartic acid protease 1 (caspase-1) and gasdermin D (GSDMD) along with their cleaved forms in lung tissue. Additionally, reverse transcription quantitative polymerase chain reaction was performed to analyze the expression of related inflammatory cytokines. ROS content was detected using flow cytometry and confocal laser microscopy. Mitochondrial morphological changes were observed using transmission electron microscopy, and HMGB1 expression was detected using immunofluorescence.
RESULTS:
Resveratrol significantly alleviated LPS-induced lung damage with reduced inflammation, interstitial edema, and leukocyte infiltration (P<0.01). It also decreased serum levels of IL-1 β and IL-18 (P<0.05), while downregulating the expressions of NLRP3, IL-6, and other inflammatory markers at both the protein and mRNA levels (P<0.05). Notably, the higher dose (100 mg/kg) demonstrated a better effect than the lower dose (25 mg/kg). In macrophages, resveratrol reduced IL-1 β and IL-18 following LPS and ATP stimulation, suppressed HMGB1 translocation, and inhibited formation and activation of the NLRP3 inflammasome (P<0.05 or P<0.01). These anti-inflammatory effects were mediated through the suppression ROS accumulation (P<0.01) and mitochondrial dysfunction. Transmission electron microscopy revealed that resveratrol preserved mitochondrial structure, preventing the mitochondrial damage seen in LPS-treated groups (P<0.01). The expressions of cleaved caspase-1, cleaved GSDMD, and cytoplasmic HMGB1 were all reduced following resveratrol treatment (P<0.01). Moreover, resveratrol inhibited dissociation of TXNIP from thioredoxin, blocking subsequent activation of NLRP3 and downstream inflammatory cytokines (P<0.01). Similarly, the higher concentration of resveratrol (20 µ mol/L) exhibited superior efficacy in vitro.
CONCLUSION
Resveratrol can reduce the inflammatory response following ALI and inhibit the activation of NLRP3 inflammasome and the level of HMGB1 in the cytoplasm by inhibiting ROS overproduction.
Acute Lung Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Resveratrol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Inflammation/complications*
;
Mice, Inbred C57BL
;
Carrier Proteins/metabolism*
;
Signal Transduction/drug effects*
;
Lipopolysaccharides
;
Thioredoxins/metabolism*
;
Mice
;
Lung/drug effects*
;
Male
;
Cell Line
;
Interleukin-1beta/metabolism*
;
Cell Cycle Proteins
;
Stilbenes/therapeutic use*
2.Influence of dexamethasone on the cell polarity and PAR complex of the embryonic epithelial cells in the palate.
Ma LI ; Shi BING ; Zheng QIAN
West China Journal of Stomatology 2018;36(1):9-16
OBJECTIVE:
This study aims to investigate whether dexamethasone (DEX) can down-regulate the PAR complex and disrupt the cell polarity in the palatal epithelium during palatal fusion.
METHODS:
Pregnant rats were randomly divided into control and DEX groups, which were injected intraperitoneally with 0.9% sodium chloride (0.1 mL) and DEX (6 mg·kg ⁻¹), respectively, every day from E10 to E12. The palatal epithelial morphology was observed using hematoxylin and eosin staining and scanning electron microscopy. Immunofluorescence staining, Western Blot analysis, and real-time polymerase chain reaction were performed to detect the expression of PAR3, PAR6, and aPKC.
RESULTS:
The incidence of cleft palate in DEX group (46.15%) was significantly higher than that in control group (3.92%), and the difference was statistically significant (χ2=24.335, P=0.00). DEX can also retard the growth of the palatal shelves and the short palatal shelves. The morphology and arrangement of MEE cells changed from polarized bilayer cells to nonpolarized monolayer ones. Additionally, the spherical structure decreased, which caused the cleft palate. PAR3 and PAR6 were only detected in the palatal epithelium, and aPKC was expressed in the palatal epithelium and mesenchyme. DEX can reduce the expression levels of PAR3, PAR6, and aPKC in the protein and gene levels.
CONCLUSIONS
DEX can down-regulate the complex gene expression in the MEE cells, thereby destroying the cell polarity and causing cleft palate.
Animals
;
Carrier Proteins
;
physiology
;
Cell Polarity
;
drug effects
;
Cleft Palate
;
etiology
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
Female
;
Glucocorticoids
;
pharmacology
;
Palate
;
Pregnancy
;
Rats
3.Involvement of fascin-1-mediated autophagy in the biological behavioral of endometrial cells.
Xiaomei LUO ; Wei CHENG ; Shizhang WANG ; Zhihong CHEN
Journal of Central South University(Medical Sciences) 2018;43(9):957-963
To explore the mechanism for the role of autophagy in endometriosis, and to provide a theoretical basis for prevention and treatment of endometriosis.
Methods: The endometrial CRL-7566 cells were treated with ATG5 siRNA, autophagic activator rapamycin and autophagic inhibitor 3-MA, respectively. The cell proliferation and invasion were detected by clonal formation, cell growth curve and MTT assay. The clinical specimens of endometriosis were collected from 20 cases. The expression of autophagy marker LC3II and autophagy substrate protein P62 were detected.
Results: Rapamycin inhibited the proliferation and clonal formation of CRL-7566 cells, while autophagy inhibitor 3-MA and ATG5 siRNA showed opposite effect. Moreover, rapamycin inhibited filopodia growth in endometriosis, whereas overexpression of filopodia-relevant protein fascin-1 inhibited the decrease in invasiveness caused by rapamycin. In clinical samples, we also found a significant decrease of LC3II while an increase in P62 compared with the control group.
Conclusion: Autophagy inhibition may contribute to an increase in endometrial cell proliferation and invasiveness. Autophagy activation could be a potential strategy for endometriosis therapy.
Autophagy
;
drug effects
;
genetics
;
Carrier Proteins
;
genetics
;
metabolism
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Endometriosis
;
physiopathology
;
Endometrium
;
cytology
;
Female
;
Gene Expression Regulation
;
Humans
;
Microfilament Proteins
;
genetics
;
metabolism
;
Microtubule-Associated Proteins
;
genetics
;
RNA-Binding Proteins
;
genetics
;
Sirolimus
;
pharmacology
4.Effects of paeonol on the function of bone marrow-derived macrophage from Porphyromonas gingivalis-induced mice.
West China Journal of Stomatology 2017;35(2):139-144
OBJECTIVEThis work aims to examine the effects of paeonol treatment on the ability of bone marrow-derived macrophage (BMM) to excrete inflammatory factors and to differentiate into osteoclasts upon induction with Porphyromonas gingivalis (P. gingivalis). This work also aims to investigate the underlying mechanisms of these abilities.
METHODSBMM culture was treated with different paeonol concentrations at for 1 h and then stimulated with P. gingivalis for 24 h before programmed death-ligand 1 (PD-L1) was quantified with flow cytometry. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). The BMM culture was treated with the receptor activator for nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), and then with paeonol for 1 h prior to induction with P. gingivalis. Then, osteoclast formation was assessed using tartrate resistant acid phosphatase (TRAP) staining. The osteoclast-related proteins TRAP and receptor activator of nuclear factor-κB (RANK) were quantified by Western blotting.
RESULTSPaeonol was nontoxic to BMM within a range of 10-50 μmol·L⁻¹. Flow cytometry showed that paeonol inhibited PD-L1 expression in P. gingivalis-induced BMM in a dose-dependent manner. ELISA indicated that paeonol dose-dependently inhibited the excretion of TNF-α, IL-1β, and IL-6 by P. gingivalis-induced BMM (P<0.01). TRAP staining revealed that paenol treatment inhibited the differentiation of P. gingivalis-induced BMM into osteoclasts. Western blot results suggested that paeonol decreased the expression of TRAP and RANK in BMM.
CONCLUSIONSPaeonol dose-dependently inhibited the excretion of the inflammatory factors TNF-α, IL-1β, and IL-6 by P. gingivalis-induced BMM in a dose-dependent manner. Moreover, paenol treatment prevented the differentiation of P. gingivalis-induced BMM differentiation into osteoclasts. .
Acetophenones ; pharmacology ; Acid Phosphatase ; Animals ; Carrier Proteins ; Cell Differentiation ; Interleukin-1beta ; Interleukin-6 ; Isoenzymes ; Macrophage Colony-Stimulating Factor ; Macrophages ; Membrane Glycoproteins ; Mice ; Osteoclasts ; Porphyromonas gingivalis ; RANK Ligand ; Receptor Activator of Nuclear Factor-kappa B ; Tumor Necrosis Factor-alpha
5.Role of sul2 Gene Linked to Transposase in Resistance to Trimethoprim/Sulfamethoxazole Among Stenotrophomonas maltophilia Isolates.
Li Fen HU ; Xi Hai XU ; Hai Fei YANG ; Ying YE ; Jia Bin LI
Annals of Laboratory Medicine 2016;36(1):73-75
No abstract available.
Anti-Bacterial Agents/*pharmacology
;
Bacterial Proteins/*genetics
;
Carrier Proteins/*genetics
;
Drug Resistance, Multiple, Bacterial/*genetics
;
Humans
;
Stenotrophomonas maltophilia/drug effects/*genetics/isolation & purification
;
Transposases/*genetics
;
Trimethoprim, Sulfamethoxazole Drug Combination/*pharmacology
6.Palmitic acid induces hepatocellular oxidative stress and activation of inflammasomes.
Wen XU ; Yu-Bin GUO ; Xu LI ; Mei-Rong HE ; Si-de LIU
Journal of Southern Medical University 2016;36(5):655-659
OBJECTIVETo evaluate the effect of palmitic acid (PA) on oxidative stress and activation of inflammasomes in hepatocytes.
METHODSTo test the dose-dependent effect of PA on normal murine hepatocytes AML12, the cells were treated with 0, 0.15, 0.25 and 0.4 mmol/L of palmitic acid (PA). The cells were also divided into blank control group, 0.25 mmol/L PA group and 0.25 mmol/L PA+N-acetylcysteine (NAC) group to examine the effect of reactive oxygen species (ROS) on the activation of inflammasomes. After 24 h of treatment, lipid accumulation, total ROS, mitochondrial ROS, expression and localization of NOX4, and expressions of inflammasomes and IL-1β were detected in the hepatocytes.
RESULTSCompared with the control cells, PA treatment of the cells significantly increased cytoplasmic lipid accumulation, concentrations of total ROS (12 463.09±2.72 vs 6691.23±2.45, P=0.00) and mitochondrial ROS (64.98±0.94 vs 45.04±0.92, P=0.00), and the expressions of NOX4, NLRP3, ASC, caspase-1, and IL-1β (1603.52±1.32 vs 2629.33±2.57, P=0.00). The mitochondria and NOX4 were found to be co-localized in the cytoplasm. NAC obviously reduced cellular ROS level stimulated by PA (7782.15±2.87 vs 5445.6±1.17, P=0.00) and suppressed the expressions of NLRP3, ASC and caspase-1.
CONCLUSIONPA treatment can stimulate lipid accumulation in hepatocytes and induce oxidative stress through NOX4 and mitochondria pathway to activate inflammasomes and stimulate the secretion of IL-1β.
Acetylcysteine ; pharmacology ; Animals ; Carrier Proteins ; metabolism ; Caspase 1 ; metabolism ; Cells, Cultured ; Hepatocytes ; drug effects ; metabolism ; Inflammasomes ; drug effects ; metabolism ; Interleukin-1beta ; metabolism ; Mice ; Mitochondria ; drug effects ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; Oxidative Stress ; Palmitic Acid ; pharmacology ; Reactive Oxygen Species ; metabolism
7.Protective effect of peperphentonamine injection through the otocyst against gentamicin- induced cochlear damage in guinea pigs.
Bo-Bo LI ; Jian WU ; Jing CHEN ; Hao CHEN ; Yong-He LI
Journal of Southern Medical University 2016;36(4):557-561
OBJECTIVETo explore the relationship of gentamicin-induced cochlear damage with autophagy-related protein LC3, beclin1, Na(+-)K(+-)2Cl(-) cotransporter (NKCC1) mRNA and endothelin-1 (ET-1), and investigate the protective mechanism of PPTA against gentamicin-induced cochlear damage.
METHODSSixty guinea pigs were randomly divided into control group (with saline and artificial perilymph injections), model group (with gentamicin and artificial perilymph injections), concurrent treatment group (with gentamicin and PPTA injections), model control group (with artificial perilymph injection 7 days after gentamicin injection) and delayed treatment group (with PPTA injection 7 days after gentamicin injection). Saline and gentamicin (160 mg/kg) were injected intraperitoneally, and artificial perilymph and PPTA were injected into the otocysts on a daily basis for 7 consecutive days. Hearing impairment of the guinea pigs was analyzed with ABR, and the protein expressions of beclin1 and LC3 in cochlear tissue were tested. The expression of NKCC1 mRNA was detected with RT-PCR, and the expression of ET-1 was detected immunohistochemically.
RESULTSThe ABR thresholds in the model group and model control group were similar (P>0.05) , but significantly higher than those in the other 3 groups (P<0.05); the threshold was significantly lower in concurrent treatment group than in delayed treatment group (P<0.05). Compared with those in the other 4 groups, the expressions of LC3 II, beclin1, and NKCC1 mRNA were significantly increased in the model group (P<0.05); and those in delayed treatment group were significantly lower than those in the model control group (P<0.05). The expressions of ET-1 in the Corti organ, striavascularis and spiral ganglion were significantly higher in the model group but significantly lower in the control group than those in the other 4 groups; ET-1 expression was significantly lower in delayed treatment group than in the model control group.
CONCLUSIONPPTA offers protection against gantamicin-induced cochlear damage in guinea pigs by inhibiting cell autophagy and suppressing of NKCC1 and ET-1 expressions. Early intervention with PPTA produces better therapeutic effect, suggesting that gantamicin causes irreversible injury of the auditory cells.
3,4-Methylenedioxyamphetamine ; analogs & derivatives ; pharmacology ; Animals ; Apoptosis Regulatory Proteins ; metabolism ; Beclin-1 ; Cochlea ; drug effects ; Endothelin-1 ; metabolism ; Gentamicins ; adverse effects ; Guinea Pigs ; Hearing Loss ; chemically induced ; prevention & control ; Microtubule-Associated Proteins ; metabolism ; Solute Carrier Family 12, Member 2 ; metabolism
8.NLRP3 inflammasome mediates angiotension II-induced expression of inflammatory factor interleukin-1β in human umbilical vein endothelial cells.
Ren-Qiang YANG ; Ling HUANG ; Xiao-Xin MA ; Si-Yi JIN ; Dan WANG ; Xu LI
Journal of Southern Medical University 2016;36(6):790-795
OBJECTIVETo investigate the effect of angiotension II (AngII) on the activation of NLRP3 inflammasome and the expression of interleukin-1β (IL-1β) in human umbilical vein endothelial cells (HUVECs).
METHODSHUVECs cultured in vitro were treated with different concentrations of AngII for varying lengths of time to determine the optimal concentration and time for AngII exposure. To test the impact of different agents on the effect of AngII exposure, HUVECs were pretreated with AngII receptor blocker losartan, NAD(P)H inhibitor DPI and H(2)O(2) scavenger CAT, caspase 1 inhibitor YVAD, or NLRP3 siRNA for silencing NLRP3, and the protein levels of NOX4, NLRP3, caspase-1 and IL-1β in HUVECs were analyzed by Western blotting.
RESULTSAngII treatment at the optimal concentration (10(-9) mol/L) for 12 h significantly increased the protein levels of NOX4, NLRP3, caspase1 and IL-1β in HUVECs. Pretreatment with losartan, DPI, CAT, YVAD, or NLRP3 siRNA all attenuated the effects of AngII on the cells.
CONCLUSIONAngII can induce vascular inflammation by promoting the production of reactive oxygen species and activating NLRP3 inflammasome to increase the protein expression of IL-1β in HUVECs.
Adaptor Proteins, Signal Transducing ; pharmacology ; Angiotensin II ; pharmacology ; Blotting, Western ; Carrier Proteins ; metabolism ; Caspase 1 ; metabolism ; Human Umbilical Vein Endothelial Cells ; metabolism ; Humans ; Hydrogen Peroxide ; Inflammasomes ; metabolism ; Interleukin-1beta ; metabolism ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; RNA, Small Interfering ; Reactive Oxygen Species ; metabolism
9.A experiment research of beryllium oxide induced oxidative lung injury and the protective effects of LBP in rats.
Zhihong LIU ; Qingfeng ZHANG ; Yao WANG ; Conghui WEI ; Qing YAN ; Aihong GONG ; Xiong GUO ; E-mail: GUO@MAILI.XJTU.EDU.CN.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(7):512-516
OBJECTIVETo explore beryllium oxide induced oxidative lung injury and the protective effects of LBP.
METHODSIntoxication of animals were induced by once intratracheal injection and LBP intervention by intragastric administration. The content of HIF-1, VEGF and HO-1 of lung tissues were measured by kits. The pathological changes of lung tissue were showed by pathological section. The changes of lung ultrastructure were observed by electron microscope.
RESULTSPathological changes of the lung tissue in beryllium oxide exposure group rats were in line with the characteristics of beryllium disease in human. Compared with the control group, HO-1 was increased in beryllium oxide exposure 40 d group and low doses of LBP group, compared with the control group, HO-1 was increased in beryllium oxide exposure 80d group and LBP treatment groups (P < 0.05 or P < 0.01). Compared with the control group, HIF-1 was increased in beryllium oxide exposure 40 d group, LBP treatment groups, beryllium oxide exposure 60 d and 80 d groups (P < 0.05 or P < 0.01). Compared with the control group, VEGF was increased of all phases, especially in beryllium oxide exposure 40d and 80 groups, LBP treatment groups and beryllium oxide exposure 60 d (P < 0.05 or P < 0.01). The content of HO-1 of beryllium oxide exposure group was higher than the LBP treatment for 40d group but below LBP treatment for 80 d group (P < 0.05). The content of HIF1 of beryllium oxide exposure group was higher than high dose of LBP treatment for 60d group and LBP treatment for 80 d group (P < 0.01). The content of VEGF of beryllium oxide exposure group was higher than LBP treatment for 40 d group and high dose of LBP treatment for 60 d (P < 0.05 or P < 0.01).
CONCLUSIONSBeO can cause abnormal expression of related genes of lung tissue in rats, LBP has protective effects on BeO caused lung injury.
Acute Lung Injury ; chemically induced ; physiopathology ; Acute-Phase Proteins ; pharmacology ; Animals ; Beryllium ; toxicity ; Carrier Proteins ; pharmacology ; Heme Oxygenase (Decyclizing) ; metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit ; metabolism ; Lung ; drug effects ; pathology ; Membrane Glycoproteins ; pharmacology ; Oxidative Stress ; Protective Agents ; pharmacology ; Rats ; Vascular Endothelial Growth Factor A ; metabolism
10.Phosphorylation of Atg31 is required for autophagy.
Wenzhi FENG ; Tong WU ; Xiaoyu DAN ; Yuling CHEN ; Lin LI ; She CHEN ; Di MIAO ; Haiteng DENG ; Xinqi GONG ; Li YU
Protein & Cell 2015;6(4):288-296
Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17-Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.
Alanine
;
chemistry
;
metabolism
;
Amino Acid Motifs
;
Aspartic Acid
;
chemistry
;
metabolism
;
Autophagy
;
genetics
;
Autophagy-Related Proteins
;
Carrier Proteins
;
chemistry
;
metabolism
;
Gene Expression Regulation, Fungal
;
Membrane Proteins
;
chemistry
;
metabolism
;
Models, Molecular
;
Molecular Sequence Data
;
Nitrogen
;
deficiency
;
Phagosomes
;
chemistry
;
drug effects
;
metabolism
;
Phosphorylation
;
Protein Transport
;
Saccharomyces cerevisiae
;
drug effects
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
chemistry
;
genetics
;
metabolism
;
Serine
;
chemistry
;
metabolism
;
Signal Transduction
;
Sirolimus
;
pharmacology

Result Analysis
Print
Save
E-mail