1.Seroprevalence of IgM and IgG Antibodies against SARS-CoV-2 in Asymptomatic People in Wuhan: Data from a General Hospital Near South China Seafood Wholesale Market during March to April in 2020.
Rui Jie LING ; Yi Han YU ; Jia Yu HE ; Ji Xian ZHANG ; Sha XU ; Ren Rong SUN ; Wang Cai ZHU ; Ming Feng CHEN ; Tao LI ; Hong Long JI ; Huan Qiang WANG
Biomedical and Environmental Sciences 2021;34(9):743-749
The aim of this study was to estimate the seroprevalence of immunoglobulin M (IgM) and G (IgG) antibodies against SARS-CoV-2 in asymptomatic people in Wuhan. This was a cross-sectional study, which enrolled 18,712 asymptomatic participants from 154 work units in Wuhan. Pearson Chi-square test,
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Antibodies, Viral/blood*
;
COVID-19/immunology*
;
Carrier State/immunology*
;
Child
;
Child, Preschool
;
China/epidemiology*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Cross-Sectional Studies
;
Female
;
Humans
;
Immunoglobulin G/blood*
;
Immunoglobulin M/blood*
;
Male
;
Middle Aged
;
Occupations/classification*
;
Phosphoproteins/immunology*
;
SARS-CoV-2/immunology*
;
Seroepidemiologic Studies
;
Spike Glycoprotein, Coronavirus/immunology*
;
Young Adult
2.Small Interfering RNA Targeting α-Fodrin Suppressing the Immune Response of Sjögren's Syndrome Mice.
Xiao-Lin SUN ; Chun-Yan PANG ; Yuan LIU ; Wei ZHANG ; Yong-Fu WANG
Chinese Medical Journal 2018;131(22):2752-2754
Animals
;
Carrier Proteins
;
genetics
;
Immunohistochemistry
;
Lacrimal Apparatus
;
metabolism
;
Lung
;
metabolism
;
Mice
;
Mice, Inbred NOD
;
Microfilament Proteins
;
genetics
;
RNA, Small Interfering
;
genetics
;
physiology
;
Random Allocation
;
Sjogren's Syndrome
;
genetics
;
immunology
;
therapy
3.NOD-Like Receptors in Infection, Immunity, and Diseases.
Young Keun KIM ; Jeon Soo SHIN ; Moon H NAHM
Yonsei Medical Journal 2016;57(1):5-14
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are pattern-recognition receptors similar to toll-like receptors (TLRs). While TLRs are transmembrane receptors, NLRs are cytoplasmic receptors that play a crucial role in the innate immune response by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Based on their N-terminal domain, NLRs are divided into four subfamilies: NLRA, NLRB, NLRC, and NLRP. NLRs can also be divided into four broad functional categories: inflammasome assembly, signaling transduction, transcription activation, and autophagy. In addition to recognizing PAMPs and DAMPs, NLRs act as a key regulator of apoptosis and early development. Therefore, there are significant associations between NLRs and various diseases related to infection and immunity. NLR studies have recently begun to unveil the roles of NLRs in diseases such as gout, cryopyrin-associated periodic fever syndromes, and Crohn's disease. As these new associations between NRLs and diseases may improve our understanding of disease pathogenesis and lead to new approaches for the prevention and treatment of such diseases, NLRs are becoming increasingly relevant to clinicians. In this review, we provide a concise overview of NLRs and their role in infection, immunity, and disease, particularly from clinical perspectives.
Autophagy/immunology
;
Carrier Proteins
;
Humans
;
*Immunity, Innate
;
Inflammasomes
;
Nod Signaling Adaptor Proteins/immunology/*metabolism
;
Pathogen-Associated Molecular Pattern Molecules
;
Receptors, Cytoplasmic and Nuclear/immunology/*metabolism
;
Receptors, Pattern Recognition/*immunology
;
*Signal Transduction
;
Toll-Like Receptors/metabolism
4.NLRP3 Inflammasome and Host Protection against Bacterial Infection.
Journal of Korean Medical Science 2013;28(10):1415-1423
The inflammasome is a multi-protein complex that induces maturation of inflammatory cytokines interleukin (IL)-1beta and IL-18 through activation of caspase-1. Several nucleotide binding oligomerization domain-like receptor family members, including NLRP3, recognize unique microbial and danger components and play a central role in inflammasome activation. The NLRP3 inflammasome is critical for maintenance of homeostasis against pathogenic infections. However, inflammasome activation acts as a double-edged sword for various bacterial infections. When the IL-1 family of cytokines is secreted excessively, they cause tissue damage and extensive inflammatory responses that are potentially hazardous for the host. Emerging evidence has shown that diverse bacterial pathogens or their components negatively regulate inflammasome activation to escape the immune response. In this review, we discuss the current knowledge of the roles and regulation of the NLRP3 inflammasome during bacterial infections. Activation and regulation of the NLRP3 inflammasome should be tightly controlled to prevent virulence and pathology during infections. Understanding the roles and regulatory mechanisms of the NLRP3 inflammasome is essential for developing potential treatment approaches against pathogenic infections.
Bacterial Infections/immunology/metabolism/pathology/prevention & control
;
Carrier Proteins/*metabolism
;
Caspase 1/metabolism
;
Humans
;
Inflammasomes/immunology/*metabolism
;
Interleukin-1beta/metabolism
;
Signal Transduction
5.Comparison of Specific IgE Antibodies to Wheat Component Allergens in Two Phenotypes of Wheat Allergy.
Young Hee NAM ; Eui Kyung HWANG ; Hyun Jung JIN ; Jeong Min LEE ; Yoo Seob SHIN ; Young Min YE ; Arantxa PALACIN ; Gabriel SALCEDO ; Soo Young LEE ; Hae Sim PARK
Journal of Korean Medical Science 2013;28(11):1697-1699
Specific IgE to gliadin was proposed as a marker for wheat dependent exercise induced anaphylaxis, while Tri a 14 was found to induce IgE response in baker's asthma. We evaluated whether these components could be used for discriminating phenotypes of wheat allergy. Twenty-nine patients who were wheat-induced anaphylaxis and/or urticaria (n=21, group I) and baker's asthma (n=8, group II) were enrolled. The prevalence of serum specific IgE to Tri a 14 was higher in group II (25%) than in group I (4.8%), while the serum specific IgE to gliadin was significantly higher in group I (70%) than in group II (12.5%). The cutoff value for predicting the baker's asthma using the ratio of serum specific IgE to Tri a 14 to gliadin was 742.8 optical densityx1,000/(kU/L) with high sensitivity and specificity. These findings suggest that Tri a 14/gliadin may be a potential marker for predicting baker's asthma.
Adult
;
Anaphylaxis/immunology
;
Antigens, Plant/*immunology
;
Asthma/blood/diagnosis/immunology
;
Biological Markers/blood
;
Carrier Proteins/*immunology
;
Female
;
Gliadin/*immunology
;
Humans
;
Immunoglobulin E/*blood/immunology
;
Male
;
Phenotype
;
Triticum/immunology
;
Urticaria/immunology
;
Wheat Hypersensitivity/*diagnosis/*immunology
6.Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities.
Lu LU ; Fei YU ; Lan-Ying DU ; Wei XU ; Shi-Bo JIANG
Chinese Medical Journal 2013;126(12):2374-2379
OBJECTIVETo review the mechanisms by which HIV evades different components of the host immune system.
DATA SOURCESThis review is based on data obtained from published articles from 1991 to 2012. To perform the PubMed literature search, the following key words were input: HIV and immune evasion.
STUDY SELECTIONArticles containing information related to HIV immune evasion were selected.
RESULTSAlthough HIV is able to induce vigorous antiviral immune responses, viral replication cannot be fully controlled, and neither pre-existing infected cells nor latent HIV infection can be completely eradicated. Like many other enveloped viruses, HIV can escape recognition by the innate and adaptive immune systems. Recent findings have demonstrated that HIV can also successfully evade host restriction factors, the components of intrinsic immune system, such as APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G), TRIM5α (tripartite motif 5-α), tetherin, and SAMHD1 (SAM-domain HD-domain containing protein).
CONCLUSIONSHIV immune evasion plays an important role in HIV pathogenesis. Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.
APOBEC-3G Deaminase ; Adaptive Immunity ; Antibodies, Neutralizing ; immunology ; Antigens, CD ; physiology ; Carrier Proteins ; physiology ; Complement System Proteins ; immunology ; Cytidine Deaminase ; physiology ; GPI-Linked Proteins ; physiology ; HIV-1 ; immunology ; Humans ; Immune Evasion ; Killer Cells, Natural ; immunology ; Monomeric GTP-Binding Proteins ; physiology ; SAM Domain and HD Domain-Containing Protein 1
7.Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.
Sung Nam PARK ; Kyung Tae NOH ; Young Il JEONG ; In Duk JUNG ; Hyun Kyu KANG ; Gil Sun CHA ; Su Jung LEE ; Jong Keun SEO ; Dae Hwan KANG ; Tae Ho HWANG ; Eun Kyung LEE ; Byungsuk KWON ; Yeong Min PARK
Experimental & Molecular Medicine 2013;45(2):e8-
We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.
Acute-Phase Proteins/metabolism
;
Adaptor Proteins, Vesicular Transport/metabolism
;
Animals
;
Antigens, CD14/metabolism
;
Bone Marrow Cells/cytology/drug effects
;
CD8-Positive T-Lymphocytes/*immunology
;
Carrier Proteins/metabolism
;
Cell Differentiation/drug effects
;
Cell Nucleus/drug effects/metabolism
;
Cell Proliferation/drug effects
;
Cytokines/biosynthesis
;
Dendritic Cells/cytology/drug effects/enzymology/*immunology
;
Enzyme Activation/drug effects
;
Lymphocyte Activation/*drug effects
;
Membrane Glycoproteins/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Mitogen-Activated Protein Kinases/metabolism
;
Myeloid Differentiation Factor 88/metabolism
;
NF-kappa B/metabolism
;
Neoplasms/immunology/*pathology
;
Pectins/*pharmacology
;
Phenotype
;
Protein Transport/drug effects
;
Receptors, Chemokine/metabolism
;
Signal Transduction/drug effects
;
T-Lymphocytes, Cytotoxic/cytology/drug effects
;
Toll-Like Receptor 4/*agonists/metabolism
8.The NLRP3 inflammasome activation in human or mouse cells, sensitivity causes puzzle.
Hongbin WANG ; Liming MAO ; Guangxun MENG
Protein & Cell 2013;4(8):565-568
Animals
;
Carrier Proteins
;
metabolism
;
Caspase 1
;
metabolism
;
Humans
;
Inflammasomes
;
metabolism
;
Interleukin-1beta
;
metabolism
;
Lipopolysaccharides
;
toxicity
;
Mice
;
Monocytes
;
drug effects
;
immunology
;
metabolism
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Signal Transduction
;
drug effects
9.Negative regulation of NLRP3 inflammasome signaling.
Protein & Cell 2013;4(4):251-258
Inflammasomes are multiprotein complexes that serve as a platform for caspase-1 activation and interleukin-1β (IL-1β) maturation as well as pyroptosis. Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied. NLRP3 inflammasome is triggered by a variety of stimuli, including infection, tissue damage and metabolic dysregulation, and then activated through an integrated cellular signal. Many regulatory mechanisms have been identified to attenuate NLRP3 inflammasome signaling at multiple steps. Here, we review the developments in the negative regulation of NLRP3 inflammasome that protect host from inflammatory damage.
Animals
;
Autophagy
;
Carrier Proteins
;
antagonists & inhibitors
;
metabolism
;
Caspase 1
;
metabolism
;
Humans
;
Inflammasomes
;
metabolism
;
Interferon Type I
;
metabolism
;
MicroRNAs
;
metabolism
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Nitric Oxide
;
metabolism
;
Signal Transduction
;
T-Lymphocytes
;
immunology
;
metabolism
10.Subcellular localization and resistance to Botrytis cinerea of a new type lipid transfer protein AtDhyPRP1 from Arabidopsis thaliana.
Chen ZHANG ; Lan LI ; Ziqin XU
Chinese Journal of Biotechnology 2012;28(5):602-612
Genetic transformation was adopted to analyze the subcellular localization and the resistance to fungal pathogens of Arabidopsis lipid transfer protein AtDHyPRP1. The coding sequence of AtDHyPRP1 amplified by PCR from Ws ecotype was used to construct the plant binary expression vector pRI101-AN-AtDHyPRP1 and the fusion expression vector pCAMBIA1302-AtDHyPRP1-GFP. Transgenic tobacco and Arabidopsis plants were produced by leaf disc and floral dip protocols, respectively. AtDHyPRP1 could improve the resistance of tobacco to Botrytis cinerea remarkably and the infection sites on transgenic tobacco leaves accumulated large amounts of H2O2. Observation under laser scanning confocal microscope showed that AtDHyPRP1 was localized to cell surface. It suggested that AtDHyPRP1 might play special function after secretion to outside of the cell and was involved in plant defense system against pathogens.
Amino Acid Sequence
;
Antigens, Plant
;
genetics
;
metabolism
;
Arabidopsis
;
genetics
;
metabolism
;
microbiology
;
Arabidopsis Proteins
;
genetics
;
metabolism
;
Botrytis
;
Carrier Proteins
;
genetics
;
metabolism
;
Disease Resistance
;
Escherichia coli
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Plant Diseases
;
immunology
;
microbiology
;
Plant Proteins
;
genetics
;
metabolism
;
Plants, Genetically Modified
;
genetics
;
metabolism
;
microbiology
;
Recombinant Proteins
;
genetics
;
metabolism
;
Subcellular Fractions
;
metabolism
;
Tobacco
;
genetics
;
metabolism
;
microbiology

Result Analysis
Print
Save
E-mail