1.Levels of L-carnitine in human seminal plasma are associated with sperm fatty acid composition.
Mario ILICETO ; Mette Haug STENSEN ; Jorunn M ANDERSEN ; Trine B HAUGEN ; Oliwia WITCZAK
Asian Journal of Andrology 2022;24(5):451-457
The fatty acid composition of spermatozoa has been shown to be important for their function, and L-carnitine is crucial for fatty acid metabolism. Its levels in the seminal plasma positively correlate with semen quality, whereas high body mass index (BMI) is associated with both reduced semen quality and altered sperm fatty acid composition. Here, we examined the associations between free seminal L-carnitine levels and sperm fatty acid composition as well as BMI. Semen samples were collected and analyzed from 128 men with unknown fertility status and with BMI ranging from 19 kg m-2 to 63 kg m-2. Sperm fatty acid composition was assessed by gas chromatography, while free seminal L-carnitine analysis was performed using high-performance liquid chromatography. Multiple linear regression analysis showed a positive correlation of free seminal L-carnitine levels with the amount of sperm palmitic acid (β = 0.21; P = 0.014), docosahexaenoic acid (DHA; β = 0.23; P = 0.007), and total n-3 polyunsaturated fatty acids (β = 0.23; P = 0.008) and a negative correlation of free seminal L-carnitine levels with lignoceric acid (β = -0.29; P = 0.001) and total n-6 polyunsaturated fatty acids (β = -0.24; P = 0.012) when adjusted for covariates. There was no relationship between free seminal L-carnitine levels and BMI. Since free seminal L-carnitine levels are associated with semen quality, the absence of a correlation with BMI suggests that reduced semen quality in obese men is independent of seminal L-carnitine.
Carnitine
;
Docosahexaenoic Acids
;
Fatty Acids
;
Humans
;
Male
;
Semen
;
Semen Analysis
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
2.Analysis of a child with carnitine palmitoyl transferase 1A deficiency due to variant of CPT1A gene.
Zhen ZHOU ; Liming YANG ; Hongmei LIAO ; Zeshu NING ; Bo CHEN ; Zhi JIANG ; Sai YANG ; Miao WANG ; Zhenghui XIAO
Chinese Journal of Medical Genetics 2021;38(2):184-187
OBJECTIVE:
To report on the clinical, metabolic and genetic characteristics of a child with carnitine palmitoyl transferase 1A (CPT1A) deficiency.
METHODS:
Clinical data and the level of acylcarnitine for a child who initially presented as epilepsy were analyzed. Genomic DNA was extracted from peripheral blood samples of the child and her parents and subjected to next-generation sequencing (NGS).
RESULTS:
Mass spectrometry of blood acylcarnitine indicated increased carnitine 0 (C0) and significantly increased C0/ (C16+C18). DNA sequencing revealed that the child has carried compound heterozygous variants of the CPT1A gene, namely c.1846G>A and c.2201T>C, which were respectively inherited from her mother and father.
CONCLUSION
CPT1A presenting initially as epilepsy was unreported previously. Analysis of blood acylcarnitine C0 and C0/ (C16 + C18) ratio and NGS are necessary for the identification and diagnosis of CPT1A deficiency. The c.1846G>A and c.2201T>C variants of the CPT1A gene probably underlay the disease in this child. Above finding has also enriched the spectrum of CPT1A gene variants.
Carnitine/blood*
;
Carnitine O-Palmitoyltransferase/genetics*
;
Child
;
DNA Mutational Analysis
;
Female
;
Humans
;
Hypoglycemia/genetics*
;
Lipid Metabolism, Inborn Errors/genetics*
3.Effects of delivery and storage conditions on concentrations of amino acids and carnitines in neonatal dried blood spots.
Lingwei HU ; Zhenzhen HU ; Jianbin YANG ; Yu ZHANG ; Yezhen SHI ; Shasha ZHU ; Rulai YANG ; Xinwen HUANG
Journal of Zhejiang University. Medical sciences 2020;49(5):565-573
OBJECTIVE:
To explore effects of different delivery and storage conditions on concentrations of amino acids and carnitines in neonatal dried blood spots (DBS), so as to provide evidence for improving accurate and reliable detection by tandem mass spectrometry.
METHODS:
A total of 1 254 616 newborn DBS samples in Newborn Screening Center of Zhejiang Province were delivered and stored at room temperature (group A,
RESULTS:
The concentrations of amino acids and carnitines in the three groups were skewed, and the differences in amino acid and carnitine concentrations among groups were statistically significant (all
CONCLUSIONS
Cold-chain logistics system and storage in low temperature and low humidity can effectively reduce degradation of some amino acids and carnitines in DBS, improve the accuracy and reliability of detection, and thus ensures the quality of screening for neonatal metabolic diseases.
Amino Acids/analysis*
;
Carnitine/analysis*
;
Dried Blood Spot Testing/standards*
;
Humans
;
Humidity
;
Infant, Newborn
;
Neonatal Screening
;
Reproducibility of Results
;
Specimen Handling/standards*
;
Tandem Mass Spectrometry
;
Temperature
;
Time Factors
4.SLC22A5 gene mutation analysis and prenatal diagnosis for a family with primary carnitine deficiency.
Jianqiang TAN ; Dayu CHEN ; Zhetao LI ; Dejian YUAN ; Bailing LIU ; Tizhen YAN ; Jun HUANG ; Ren CAI
Chinese Journal of Medical Genetics 2019;36(7):690-693
OBJECTIVE:
To carry out mutation analysis and prenatal diagnosis for a family affected with primary carnitine deficiency.
METHODS:
Genomic DNA of the proband was extracted from peripheral blood sample 10 days after birth. The 10 exons and intron/exon boundaries of the SLC22A5 gene were subjected to PCR amplification and Sanger sequencing. The proband's mother was pregnant again two years after his birth. Fetal DNA was extracted from amniocytes and subjected to PCR and Sanger sequencing.
RESULTS:
Tandem mass spectrometric analysis of the proband revealed low level of plasma-free carnitine whilst organic acids in urine was normal. Compound heterozygous SLC22A5 mutations c.1195C>T (inherited from his father) and c.517delC (inherited from his mother) were detected in the proband. Prenatal diagnosis has detected no mutation in the fetus. The plasma-free carnitine was normal after birth.
CONCLUSION
Appropriate genetic testing and prenatal diagnosis can prevent further child with carnitine deficiency. The identification of c.517delC, a novel mutation, enriched the spectrum of SLC22A5 mutations.
Cardiomyopathies
;
genetics
;
Carnitine
;
deficiency
;
genetics
;
Child, Preschool
;
DNA Mutational Analysis
;
Female
;
Humans
;
Hyperammonemia
;
genetics
;
Muscular Diseases
;
genetics
;
Mutation
;
Pregnancy
;
Prenatal Diagnosis
;
Solute Carrier Family 22 Member 5
;
genetics
5.Automatic detection and clinical application of semen biochemical markers.
National Journal of Andrology 2018;24(4):291-296
Human seminal plasma is rich in potential biological markers for male infertility and male reproductive system diseases, which have an application value in the diagnosis and treatment of male infertility. The methods for the detection of semen biochemical markers have been developed from the manual, semi-automatic to the present automatic means. The automatic detection of semen biochemical markers is known for its advantages of simple reagent composition and small amount of reagents for each test, simple setting of parameters, whole automatic procedure with few errors, short detection time contributive to batch detection and reduction of manpower cost, simple calibration and quality control procedure to ensure accurate and reliable results, output of results in the order of the samples in favor of clinical diagnosis and treatment, and open reagents applicable to various automatic biochemistry analyzers. At present, the automatic method is applied in the detection of such semen biochemical markers as seminal plasma total and neutral alpha-glucosidase, acid phosphatase, fructose, γ-glutamyl transpeptidase, zinc, citric acid, uric acid, superoxide dismutase and carnitine, sperm acrosin and lactate dehydrogenase C4, and semen free elastase, which can be used to evaluate the secretory functions of the epididymis, seminal vesicle and prostate, sperm acrosome and energy metabolism function, seminal plasma antioxidative function, and infection or silent infection in the male genital tract.
Acid Phosphatase
;
analysis
;
Biomarkers
;
analysis
;
Carnitine
;
analysis
;
Citric Acid
;
analysis
;
Epididymis
;
metabolism
;
Fructose
;
analysis
;
Humans
;
Infertility, Male
;
diagnosis
;
Isoenzymes
;
L-Lactate Dehydrogenase
;
Male
;
Prostate
;
metabolism
;
Semen
;
chemistry
;
Seminal Vesicles
;
Spermatozoa
;
chemistry
;
alpha-Glucosidases
;
analysis
;
gamma-Glutamyltransferase
;
analysis
6.Myocardial protective effect of L-carnitine in children with hand, foot and mouth disease caused by Coxsackie A16 virus.
Ya-Jie CUI ; Chun-Lan SONG ; Fang CHEN ; Peng LI ; Yi-Bing CHENG
Chinese Journal of Contemporary Pediatrics 2017;19(8):908-912
OBJECTIVETo investigate the myocardial protective effect of L-carnitine in children with hand, foot and mouth disease (HFMD) caused by Coxsackie A16 virus and possible mechanisms.
METHODSA total of 60 HFMD children with abnormal myocardial enzyme after Coxsackie A16 virus infection were enrolled and randomly divided into L-carnitine group and fructose-1,6-diphosphate group (fructose group), with 30 children in each group. The two groups were given L-carnitine or fructose diphosphate in addition to antiviral and heat clearance treatment. Another 30 healthy children who underwent physical examination were enrolled as control group. The changes in myocardial zymogram, malondialdehyde (MDA), superoxide dismutase (SOD), and apoptosis factors sFas and sFasL after treatment were compared between groups.
RESULTSThere was no significant difference in treatment response between the L-carnitine group and the fructose group (P>0.05). One child in the fructose group progressed to critical HFMD, which was not observed in the L-carnitine group. Before treatment, the L-carnitine group and the fructose group had significantly higher indices of myocardial zymogram and levels of MDA, sFas, and sFasL and a significantly lower level of SOD than the control group (P<0.05), while there were no significant differences in these indices between the L-carnitine group and the fructose group (P>0.05). After treatment, the L-carnitine group and the fructose group had significant reductions in the indices of myocardial zymogram and levels of MDA, sFas, and sFasL and a significant increase in the level of SOD (P<0.05); the fructose group had a significantly higher level of creatine kinase (CK) than the control group and the L-carnitine group, and there were no significant differences in other myocardial enzyme indices, MDA, sFas, and sFasL between the L-carnitine group and the fructose group, as well as between the L-carnitine and fructose groups and the control group (P>0.05). SOD level was negatively correlated with aspartate aminotransferase, lactate dehydrogenase (LDH), CK, and creatine kinase-MB (CK-MB) (r=-0.437, -0.364, -0.397, and -0.519 respectively; P<0.05), and MDA level was positively correlated with LDH and CK-MB (r=0.382 and 0.411 respectively; P<0.05).
CONCLUSIONSL-carnitine exerts a good myocardial protective effect in children with HFMD caused by Coxsackie A16 virus, possibly by clearing oxygen radicals and inhibiting cardiomyocyte apoptosis.
Carnitine ; therapeutic use ; Child, Preschool ; Coxsackievirus Infections ; complications ; Female ; Hand, Foot and Mouth Disease ; drug therapy ; etiology ; metabolism ; Heart ; drug effects ; Humans ; Infant ; Male ; Malondialdehyde ; analysis ; Myocardium ; metabolism ; pathology ; Superoxide Dismutase ; metabolism
7.Fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth.
Hui TANG ; Chuan-Zhong YANG ; Huan LI ; Wei WEN ; Fang-Fang HUANG ; Zhi-Feng HUANG ; Yu-Ping SHI ; Yan-Liang YU ; Li-Lian CHEN ; Rui-Qin YUAN ; Xiao-Yu ZHU
Chinese Journal of Contemporary Pediatrics 2017;19(6):632-637
OBJECTIVETo investigate the fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth.
METHODSA total of 98 preterm infants were enrolled and divided into extremely preterm infant group (n=17), early preterm infant group (n=48), and moderate-to-late preterm infant group (n=33). According to the dose of fat emulsion, they were further divided into low- and high-dose subgroups. The umbilical cord blood and dried blood filter papers within 3 days after birth were collected. Tandem mass spectrometry was used to measure the content of short-, medium-, and long-chain acylcarnitines.
RESULTSThe extremely preterm infant and early preterm infant groups had a significantly lower content of long-chain acylcarnitines in the umbilical cord blood and dried blood filter papers within 3 days after birth than the moderate-to-late preterm infant group (P<0.05), and the content was positively correlated with gestational age (P<0.01). On the second day after birth, the low-dose fat emulsion subgroup had a significantly higher content of short-, medium-, and long-chain acylcarnitines than the high-dose fat emulsion subgroup among the extremely preterm infants (P<0.05). In the early preterm infant and moderate-to-late preterm infant groups, there were no significant differences in the content of short-, medium-, and long-chain acylcarnitines between the low- and high-dose fat emulsion subgroups within 3 days after birth.
CONCLUSIONSCompared with moderate-to-late preterm infants, extremely preterm infants and early preterm infants have a lower capacity to metabolize long-chain fatty acids within 3 days after birth. Early preterm infants and moderate-to-late preterm infants may tolerate high-dose fat emulsion in the early stage after birth, but extremely preterm infants may have an insufficient capacity to metabolize high-dose fat emulsion.
Carnitine ; analogs & derivatives ; blood ; Fat Emulsions, Intravenous ; analysis ; metabolism ; Gestational Age ; Humans ; Infant, Newborn ; Infant, Premature ; metabolism
8.Mutational analysis of SLC22A5 gene in eight patients with systemic primary carnitine deficiency.
Yiming LIN ; Weihua LIN ; Ke YU ; Faming ZHENG ; Zhenzhu ZHENG ; Qingliu FU
Chinese Journal of Medical Genetics 2017;34(1):35-39
OBJECTIVETo investigate the mutations of SLC22A5 gene in patients with systemic primary carnitine deficiency (CDSP).
METHODSHigh liquid chromatography tandem mass spectrometry (HPLC/MS/MS) was applied to screen congenital genetic metabolic disease and eight patients with CDSP were diagnosed among 77 511 samples. The SLC22A5 gene mutation was detected using massarray technology and sanger sequencing. Using SIFT and PolyPhen-2 to predict the function of protein for novel variations.
RESULTSTotal detection rate of gene mutation is 100% in the eight patients with CDSP. Seven patients had compound heterozygous mutations and one patient had homozygous mutations. Six different mutations were identified, including one nonsense mutation [c.760C>T(p.R254X)] and five missense mutations[c.51C>G(p.F17L), c.250T>A(p.Y84N), c.1195C>T(p.R399W), c.1196G>A(p.R399Q), c.1400C>G(p.S467C)]. The c.250T>A(p.Y84N) was a novel variation, the novel variation was predicted to have affected protein structure and function. The c.760C>T (p.R254X)was the most frequently seen mutation, which was followed by the c.1400C>G(p.S467C).
CONCLUSIONThis study confirmed the diagnosis of eight patients with CDSP on the gene level. Six mutations were found in the SLC22A5 gene, including one novel mutation which expanded the mutational spectrum of the SLC22A5 gene.
Adult ; Amino Acid Sequence ; Base Sequence ; Cardiomyopathies ; diagnosis ; genetics ; metabolism ; Carnitine ; deficiency ; genetics ; metabolism ; DNA Mutational Analysis ; methods ; Female ; Gene Frequency ; Genotype ; Humans ; Hyperammonemia ; diagnosis ; genetics ; metabolism ; Infant, Newborn ; Male ; Muscular Diseases ; diagnosis ; genetics ; metabolism ; Mutation ; Organic Cation Transport Proteins ; genetics ; metabolism ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Homology, Amino Acid ; Solute Carrier Family 22 Member 5 ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.Efficacy of alpha-lipoic acid combined with tamoxifen citrate in the treatment of oligoasthenospermia.
Hang ZHANG ; Ya-Xuan WANG ; Jing-Dong LI ; Xue-Liang CHANG ; Zhi-Hai TENG ; Yan-Ping ZHANG ; Shu-Wen YANG ; Wei LI
National Journal of Andrology 2017;23(10):899-902
Objective:
To investigate the effect of alpha-lipoic acid (α-LA) combined with tamoxifen citrate (TC) in the treatment of oligoasthenospermia.
METHODS:
From June to November 2016, we treated 60 patients with oligoasthenospermia in our Department of Andrology, 30 (the trial group) with oral α-LA (0.6 g, qd) + TC (20 mg, qd) and the other 30 (the control group) with oral L-carnitine (1g, bid) + TC (20 mg, qd). Before and after 3 months of medication, we examined the semen parameters of the patients and the levels of their seminal oxidative stress biomarkers, including methylenedioxyamphetamine (MDA) and total antioxidant capacity (TAC) in the seminal plasma. We also compared the pregnancy rate and adverse reactions between the two groups.
RESULTS:
Totally, 57 of the patients completed the treatment, 28 in the trial group and 29 in the control. Compared with the baseline, the patients of the trial group showed significant improvement after 3 months of medication in the semen volume ([2.50 ± 0.71] vs [3.37 ± 0.70] ml, P <0.05), sperm concentration ([12.00 ± 1.65] vs [19.34 ± 2.04] ×10⁶/ml, P <0.05), percentage of progressively motile sperm (PMS) ([18.01 ± 3.01]% vs [35.41 ± 6.49]%, P<0.05), MDA level ([14.96 ± 2.76] vs [10.04 ± 1.04] nmol/ml, P <0.05), and TAC in the seminal plasma ([9.83 ± 1.02] vs [12.25 ± 1.11] U/ml, P <0.05), and so did the controls in the semen volume ([2.76 ± 0.67] vs [3.36 ± 0.93] ml, P <0.05), sperm concentration ([11.47 ± 1.10] vs [17.77 ± 3.56] ×10⁶/ml, P <0.05), percentage of PMS ([19.22 ± 1.41] vs [36.01 ± 5.22] %, P <0.05), MDA level ([14.66 ± 2.75] vs [10.14 ± 1.01] nmol/ml, P <0.05), and TAC in the seminal plasma ([9.84 ± 0.90] vs [11.14 ± 0.84] U/ml, P <0.05). There were no statistically significant differences in the above post-medication parameters between the trial and control groups (P >0.05) except in TAC, which was markedly more improved in the former than in the latter (P <0.05), nor in the percentage of morphologically normal sperm before and after treatment in either of the two groups (P >0.05). After 3 months of treatment, 3 pregnancies were achieved in the trial group and 1 in the control (10.7% vs 3.45%, P >0.05). No obvious adverse events occurred during the treatment.
CONCLUSIONS
Alpha-lipoic acid combined with tamoxifen citrate can evidently improve semen parameters in oligoasthenospermia patients by relieving oxidative stress injury.
Antioxidants
;
Asthenozoospermia
;
drug therapy
;
Biomarkers
;
analysis
;
Carnitine
;
therapeutic use
;
Drug Therapy, Combination
;
Female
;
Humans
;
Male
;
Oligospermia
;
drug therapy
;
Oxidative Stress
;
Pregnancy
;
Pregnancy Rate
;
Semen Analysis
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
;
drug effects
;
Tamoxifen
;
therapeutic use
;
Thioctic Acid
;
therapeutic use
10.An analysis of clinical characteristics and gene mutation in two patients with medium- and short-chain acyl-CoA dehydrogenase deficiency.
Jian-Qiang TAN ; Da-Yu CHEN ; Zhe-Tao LI ; Ji-Wei HUANG ; Ti-Zhen YAN ; Ren CAI
Chinese Journal of Contemporary Pediatrics 2016;18(10):1019-1025
Medium- and short-chain acyl-CoA dehydrogenase deficiency is a disorder of fatty acid β-oxidation. Gene mutation prevents medium- and short-chain fatty acids from entry into mitochondria for oxidation, which leads to multiple organ dysfunction. In this study, serum acylcarnitines and the organic acid profile in urea were analyzed in two children whose clinical symptoms were hypoglycemia and metabolic acidosis. Moreover, gene mutations in the two children and their parents were evaluated. One of the patients was a 3-day-old male who was admitted to the hospital due to neonatal asphyxia, sucking weakness, and sleepiness. The serum acylcarnitine profile showed increases in medium-chain acylcarnitines (C6-C10), particularly in C8, which showed a concentration of 3.52 μmol/L (reference value: 0.02-0.2 μmol/L). The analysis of organic acids in urea gave a normal result. Sanger sequencing revealed a reported c.580A>G (p.Asn194Asp) homozygous mutation at exon 7 of the ACADM gene. The other patient was a 3-month-old female who was admitted to the hospital due to cough and recurrent fever for around 10 days. The serum acylcarnitine profile showed an increase in serum C4 level, which was 1.66 μmol/L (reference value: 0.06-0.6 μmol/L). The analysis of organic acids in urea showed an increase in the level of ethyl malonic acid, which was 55.9 (reference value: 0-6.2). Sanger sequencing revealed a reported c.625G>A (p.Gly209Ser) homozygous mutation in the ACADS gene. This study indicates that screening tests for genetic metabolic diseases are recommended for children who have unexplained metabolic acidosis and hypoglycemia. Genetic analyses of the ACADM and ACADS genes are helpful for the diagnosis of medium- and short-chain acyl-CoA dehydrogenase deficiency.
Acyl-CoA Dehydrogenase
;
deficiency
;
genetics
;
Carnitine
;
analogs & derivatives
;
blood
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Lipid Metabolism, Inborn Errors
;
genetics
;
Male
;
Mutation
;
Urea
;
analysis

Result Analysis
Print
Save
E-mail