1.Oral microbiome between patients with non-obstructive and obstructive hypertrophic cardiomyopathy.
Qianyi QIN ; Yuming ZHU ; Liu YANG ; Runzhi GUO ; Lei SONG ; Dong WANG ; Weiran LI
Chinese Medical Journal 2025;138(18):2308-2315
BACKGROUND:
The profile and clinical significance of the oral microbiome in patients with non-obstructive hypertrophic cardiomyopathy (noHCM) and obstructive hypertrophic cardiomyopathy (oHCM) remain unexplored. The objective of this study was to evaluate the difference of oral microbiome between noHCM and oHCM patients.
METHODS:
This cross-sectional study enrolled 18 noHCM patients and 26 oHCM patients from Fuwai Hospital, Chinese Academy of Medical Sciences between 2020 and 2021. Clinical and periodontal evaluations were conducted, and subgingival plaque samples were collected. Metagenomic sequencing and subsequent microbial composition and functional analyses were performed.
RESULTS:
Compared to oHCM patients, those with noHCM had higher systolic blood pressure (138.1 ± 18.8 mmHg vs . 124.2 ± 13.8 mmHg, P = 0.007), a larger body circumference (neck circumference: 39.2 ± 4.0 cm vs . 35.1 ± 3.7 cm, P = 0.001; waist circumference: 99.7 ± 10.5 cm vs . 92.2 ± 10.8 cm, P = 0.027; hip circumference: 102.5 ± 5.6 cm vs . 97.5 ± 9.1 cm, P = 0.030), a greater left ventricular end-diastolic diameter (46.6 ± 4.9 mm vs . 43.1 ± 4.9 mm, P = 0.026), and a lower left ventricular ejection fraction (64.1 ± 5.7 % vs . 68.5 ± 7.8%, P = 0.048). While overall biodiversity and general microbial composition were similar between the noHCM and oHCM groups, ten taxa displayed significant differences at the genus and species levels, with Porphyromonas gingivalis showing the highest abundance and greater enrichment in noHCM (relative abundance: 7.79535 vs . 4.87697, P = 0.043). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis identified ten distinct pathways, with pathways related to energy and amino acid metabolism being enriched in oHCM patients, and those associated with genetic information processing less abundant in the oHCM group. Metabolic potential analysis revealed ten significantly altered metabolites primarily associated with amino sugar and nucleotide sugar metabolism, porphyrin metabolism, pentose and glucuronate interconversion, and lysine degradation.
CONCLUSIONS
The higher abundance of Porphyromonas gingivalis , which is known to impact cardiovascular health, in noHCM patients may partially account for clinical differences between the groups. Pathway enrichment and metabolic potential analyses suggest microbial functional shifts between noHCM and oHCM patients, potentially reflecting inherent metabolic changes in HCM.
Humans
;
Cardiomyopathy, Hypertrophic/microbiology*
;
Female
;
Male
;
Microbiota/genetics*
;
Middle Aged
;
Cross-Sectional Studies
;
Adult
;
Mouth/microbiology*
;
Aged
2.Multimodal ultrasound assessment of myocardial perfusion and contractile function in patients with hypertrophic cardiomyopathy and their first-degree relatives.
Li YU ; Shi ZENG ; Qichang ZHOU ; Zurong YANG ; Yiyuan HUANG
Journal of Central South University(Medical Sciences) 2024;49(12):1934-1940
OBJECTIVES:
Hypertrophic cardiomyopathy (HCM) frequently leads to myocardial ischemia and cardiac dysfunction. Even genotype-positive/phenotype-negative (G+/P-) individuals, carriers of pathogenic sarcomere gene mutations without left ventricular hypertrophy, remain at risk of progression to clinical HCM. This study aims to evaluate myocardial perfusion and contractile function in familial HCM patients and their first-degree relatives using myocardial contrast echocardiography (MCE) and velocity vector imaging (VVI), in order to identify early myocardial dysfunction and at-risk individuals within families.
METHODS:
Thirty-five genetically confirmed HCM patients with left ventricular hypertrophy were assigned to a G+/P+ group. A total of 30 first-degree relatives carrying sarcomere mutations but without echocardiographic evidence of left ventricular hypertrophy were assigned to a G+/P- group. A total of 38 age- and sex-matched gene-negative healthy family members served as controls. All participants underwent MCE and VVI assessments. Myocardial perfusion parameters, including peak intensity (PI), time to peak concentration (TP), and the ratio of declining intensity and declining time (dI/dT), as well as strain parameters including global longitudinal strain (GLS), global radial strain (GRS), and global circumferential strain (GCS) were recorded and analyzed for differences and correlations.
RESULTS:
Compared to both the G+/P- and normal control groups, the G+/P+ group had significantly lower PI, dI/dT, GLS, and GRS, along with significantly increased TP (all P<0.05). GLS and GRS were positively correlated with PI (r=0.629 and r=0.613, respectively; both P<0.01) and negatively correlated with TP (r=-0.597 and r=-0.571, respectively; both P<0.01). Compared to the normal control group, the G+/P- group showed a significant reduction in GLS (P<0.05), but no significant differences in GRS, GCS, PI, TP, or dI/dT (all P>0.05).
CONCLUSIONS
Myocardial contractile dysfunction in HCM patients is closely related to impaired perfusion. Even in the absence of wall hypertrophy, sarcomere mutation carriers show early signs of subclinical left ventricular dysfunction. MCE and VVI can quantitatively assess myocardial perfusion and function, offering valuable tools for early detection and risk stratification in HCM patients and their relatives.
Humans
;
Male
;
Female
;
Myocardial Contraction/physiology*
;
Echocardiography/methods*
;
Adult
;
Cardiomyopathy, Hypertrophic/genetics*
;
Middle Aged
;
Cardiomyopathy, Hypertrophic, Familial/genetics*
;
Family
;
Mutation
3.Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy.
Junpeng GAO ; Mengya LIU ; Minjie LU ; Yuxuan ZHENG ; Yan WANG ; Jingwei YANG ; Xiaohui XUE ; Yun LIU ; Fuchou TANG ; Shuiyun WANG ; Lei SONG ; Lu WEN ; Jizheng WANG
Protein & Cell 2024;15(11):796-817
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Cardiomyopathy, Hypertrophic/metabolism*
;
Humans
;
Animals
;
DNA Methylation
;
Mice
;
Transcriptome
;
Chromatin/genetics*
;
Early Growth Response Protein 1/metabolism*
;
Male
;
Epigenome
;
Nucleosomes/genetics*
;
Female
;
Middle Aged
;
Disease Models, Animal
;
Adult
4.A case of dilated cardiomyopathy caused by FHL2 gene variant and a literature review.
Chunrui YU ; Lijuan JIA ; Chanjuan HAO ; Bianjing ZUO ; Wei LI ; Fangjie WANG ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(3):337-343
OBJECTIVE:
To explore the clinical phenotype and genetic features of a child with dilated cardiomyopathy (DCM).
METHODS:
Clinical data of the child who had presented at the Zhengzhou Children's Hospital on April 28, 2020 was collected. Trio-whole exome sequencing (trio-WES) was carried out for the child and her parents, and candidate variants were validated by Sanger sequencing. "FHL2" was taken as the key word to retrieve related literature from January 1, 1997 to October 31, 2021 in the PubMed database and was also searched in the ClinVar database as a supplement to analyze the correlation between genetic variants and clinical features.
RESULTS:
The patient was a 5-month-old female infant presented with left ventricular enlargement and reduced systolic function. A heterozygous missense variant c.391C>T (p.Arg131Cys) in FHL2 gene was identified through trio-WES. The same variant was not detected in either of her parents. A total of 10 patients with FHL2 gene variants have been reported in the literature, 6 of them had presented with DCM, 2 with hypertrophic cardiomyopathy (HCM), and 2 with sudden unexplained death (SUD). Phenotypic analysis revealed that patients with variants in the LIM 3 domain presented hypertrophic cardiomyopathy and those with variants of the LIM 0~2 and LIM 4 domains had mainly presented DCM. The c.391C>T (p.Arg131Cys) has been identified in a child with DCM, though it has not been validated among the patient's family members. Based on the guidelines of the American College of Medical Genetics and Genomics, the c.391C>T(p.Arg131Cys) variant was re-classified as likely pathogenic (PS2+PM2_Supporting+PP3+PP5).
CONCLUSION
The heterozygous missense variant of c.391C>T (p.Arg131Cys) in the FHL2 gene probably predisposed to the DCM in this child, which has highlighted the importance of WES in the clinical diagnosis and genetic counseling.
Female
;
Humans
;
Cardiomyopathy, Dilated/genetics*
;
Cardiomyopathy, Hypertrophic
;
Genetic Counseling
;
Genomics
;
Heterozygote
;
Muscle Proteins/genetics*
;
Transcription Factors
;
LIM-Homeodomain Proteins/genetics*
5.Association between clinical phenotypes of hypertrophic cardiomyopathy and Ca2+ gene variation gene variation.
Jia ZHAO ; Bo WANG ; Lu YAO ; Jing WANG ; Xiao Nan LU ; Chang Ting LIANG ; Sheng Jun TA ; Xue Li ZHAO ; Jiao LIU ; Li Wen LIU
Chinese Journal of Cardiology 2023;51(5):497-503
Objective: To observe the association between clinical phenotypes of hypertrophic cardiomyopathy (HCM) patients and a rare calcium channel and regulatory gene variation (Ca2+ gene variation) and to compare clinical phenotypes of HCM patients with Ca2+ gene variation, a single sarcomere gene variation and without gene variation and to explore the influence of rare Ca2+ gene variation on the clinical phenotypes of HCM. Methods: Eight hundred forty-two non-related adult HCM patients diagnosed for the first time in Xijing Hospital from 2013 to 2019 were enrolled in this study. All patients underwent exon analyses of 96 hereditary cardiac disease-related genes. Patients with diabetes mellitus, coronary artery disease, post alcohol septal ablation or septal myectomy, and patients who carried sarcomere gene variation of uncertain significance or carried>1 sarcomere gene variation or carried>1 Ca2+ gene variation, with HCM pseudophenotype or carrier of ion channel gene variations other than Ca2+ based on the genetic test results were excluded. Patients were divided into gene negative group (no sarcomere or Ca2+ gene variants), sarcomere gene variation group (only 1 sarcomere gene variant) and Ca2+ gene variant group (only 1 Ca2+ gene variant). Baseline data, echocardiography and electrocardiogram data were collected for analysis. Results: A total of 346 patients were enrolled, including 170 patients without gene variation (gene negative group), 154 patients with a single sarcomere gene variation (sarcomere gene variation group) and 22 patients with a single rare Ca2+ gene variation (Ca2+ gene variation group). Compared with gene negative group, patients in Ca2+ gene variation group had higher blood pressure and higher percentage of family history of HCM and sudden cardiac death (P<0.05); echocardiographic results showed that patients in Ca2+ gene variation group had thicker ventricular septum ((23.5±5.8) mm vs. (22.3±5.7) mm, P<0.05); electrocardiographic results showed that patients in Ca2+ gene variation group had prolonged QT interval ((416.6±23.1) ms vs. (400.6±47.2) ms, P<0.05) and higher RV5+SV1 ((4.51±2.26) mv vs. (3.50±1.65) mv, P<0.05). Compared with sarcomere gene variation group, patients in Ca2+ gene variation group had later onset age and higher blood pressure (P<0.05); echocardiographic results showed that there was no significant difference in ventricular septal thickness between two groups; patients in Ca2+ gene variation group had lower percentage of left ventricular outflow tract pressure gradient>30 mmHg (1 mmHg=0.133 kPa, 22.8% vs. 48.1%, P<0.05) and the lower early diastolic peak velocity of the mitral valve inflow/early diastolic peak velocity of the mitral valve annulus (E/e') ratio ((13.0±2.5) vs. (15.9±4.2), P<0.05); patients in Ca2+ gene variation group had prolonged QT interval ((416.6±23.1) ms vs. (399.0±43.0) ms, P<0.05) and lower percentage of ST segment depression (9.1% vs. 40.3%, P<0.05). Conclusion: Compared with gene negative group, the clinical phenotype of HCM is more severe in patients with rare Ca2+ gene variation; compared with patients with sarcomere gene variation, the clinical phenotype of HCM is milder in patients with rare Ca2+ gene variation.
Humans
;
Cardiac Surgical Procedures/methods*
;
Cardiomyopathy, Hypertrophic/genetics*
;
Echocardiography
;
Electrocardiography
;
Phenotype
;
Sarcomeres/genetics*
;
Adult
6.Recent research on childhood hypertrophic cardiomyopathy caused by MYH7 gene mutations.
Kui ZHENG ; Lu LIU ; Ying-Qian ZHANG
Chinese Journal of Contemporary Pediatrics 2023;25(4):425-430
Hypertrophic cardiomyopathy (HCM) is the most common monogenic inherited myocardial disease in children, and mutations in sarcomere genes (such as MYH7 and MYBPC3) are the most common genetic etiology of HCM, among which mutations in the MYH7 gene are the most common and account for 30%-50%. MYH7 gene mutations have the characteristics of being affected by environmental factors, coexisting with multiple genetic variations, and age-dependent penetrance, which leads to different or overlapping clinical phenotypes in children, including various cardiomyopathies and skeletal myopathies. At present, the pathogenesis, course, and prognosis of HCM caused by MYH7 gene mutations in children remain unclear. This article summarizes the possible pathogenesis, clinical phenotype, and treatment of HCM caused by MYH7 gene mutations, in order to facilitate the accurate prognostic evaluation and individualized management and treatment of the children with this disorder.
Child
;
Humans
;
Cardiomyopathy, Hypertrophic/therapy*
;
Phenotype
;
Troponin T/genetics*
;
Mutation
;
Carrier Proteins/genetics*
;
Myosin Heavy Chains/genetics*
;
Cardiac Myosins/genetics*
7.Clinical and genetic analysis of eight children with Primary hypertrophic cardiomyopathy.
Qiqing SUN ; Fangjie WANG ; Linbo SU ; Kun HE ; Yingying LI ; Chanjuan HAO ; Wei LI ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(10):1211-1216
OBJECTIVE:
To explore the clinical and genetic characteristics of eight children with Primary hypertrophic cardiomyopathy (HCM).
METHODS:
Eight children with HCM admitted to the Department of Cardiology of Henan Children's Hospital from January 2018 to December 2021 were selected as the study subjects. Clinical data of the children were collected. Whole exome sequencing was carried out on two children, and trio whole exome sequencing was carried out on the remainder 6 children. Sanger sequencing was used to verify the candidate variants in the children and their parents, and the pathogenicity of the variants was evaluated based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
RESULTS:
The patients had included 5 males and 3 females, with their ages ranging from 5 to 13 years old. The average age of diagnosis was (7.87 ± 4.8) years old, and the cardiac phenotype showed non-obstructive HCM in all of the patients. WES has identified variants of the MYH7 gene in 4 children, including c.2155C>T (p.Arg719Trp), c.1208G>A (p.Arg403Gln), c.1358G>A (p.Arg453His), and c.1498G>A (p.Glu500Lys). Based on the guidelines from the ACMG, the first 3 variants were classified as pathogenic, while c.1498G>A (p.Glu500Lys) was classified as likely pathogenic (PM1+PM2_Supporting+PM6+PP3), which was also unreported previously. The remaining four children had all harbored maternal variants, including MYL2: c.173G>A (p.Arg58Gln; classified as pathogenic), TPM1: c.574G>A (p.Glu192Lys) and ACTC1: c.301G>A (p.Glu101Lys)(both were classified as likely pathogenic), and MYBPC3: c.146T>G (p.Ile49Ser; classified as variant of uncertain significance). Seven children were treated with 0.5 ~ 3 mg/(kg·d) propranolol, and their symptoms had improved significantly. They were followed up until September 30, 2022 without further cardiac event.
CONCLUSION
Genetic testing can clarify the molecular basis for unexplained cardiomyopathy and provide a basis for clinical diagnosis and genetic counseling. Discovery of the c.1498G>A (p.Glu500Lys) variant has also expanded the spectrum of MYH7 gene mutations underlying HCM.
Female
;
Male
;
Humans
;
Child
;
Child, Preschool
;
Adolescent
;
Cytoskeletal Proteins
;
Family
;
Genetic Counseling
;
Genetic Testing
;
Cardiomyopathy, Hypertrophic/genetics*
8.Phenotype and genotype characteristics of children with cardiomyopathy associated with MYH7 gene mutation: a retrospective analysis.
Lu LIU ; Kui ZHENG ; Ying-Qian ZHANG
Chinese Journal of Contemporary Pediatrics 2023;25(11):1156-1160
OBJECTIVES:
To investigate the clinical phenotype and genotype characteristics of children withcardiomyopathy (CM) associated with MYH7 gene mutation.
METHODS:
A retrospective analysis was conducted on the medical data of five children with CM caused by MYH7 gene mutation who were diagnosed and treated in the Department of Cardiology, Hebei Children's Hospital.
RESULTS:
Among the five children with CM, there were three girls and two boys, all of whom carried MYH7 gene mutation. Seven mutation sites were identified, among which five were not reported before. Among the five children, there were three children with hypertrophic cardiomyopathy, one child with dilated cardiomyopathy, and one child with noncompaction cardiomyopathy. The age ranged from 6 to 156 months at the initial diagnosis. At the initial diagnosis, two children had the manifestations of heart failure such as cough, shortness of breath, poor feeding, and cyanosis of lips, as well as delayed development; one child had palpitation, blackness, and syncope; one child had fever, runny nose, and abnormal liver function; all five children had a reduction in activity endurance. All five children received pharmacotherapy for improving cardiac function and survived after follow-up for 7-24 months.
CONCLUSIONS
The age of onset varies in children with CM caused by MYH7 gene mutation, and most children lack specific clinical manifestations at the initial diagnosis and may have the phenotype of hypertrophic cardiomyopathy, dilated cardiomyopathy or noncompaction cardiomyopathy. The children receiving early genetic diagnosis and pharmacological intervention result in a favorable short-term prognosis.
Male
;
Female
;
Child
;
Humans
;
Retrospective Studies
;
Cardiomyopathy, Dilated/genetics*
;
Pedigree
;
Phenotype
;
Genotype
;
Mutation
;
Cardiomyopathy, Hypertrophic/diagnosis*
;
Myosin Heavy Chains/genetics*
;
Cardiac Myosins/genetics*

Result Analysis
Print
Save
E-mail