1.Disulfiram alleviates cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Wei-Dong LI ; Xuan-Yang SHEN ; Xiao-Lu JIANG ; Hong-Fu WEN ; Yuan SHEN ; Mei-Qi ZHANG ; Wen-Tao TAN
Acta Physiologica Sinica 2025;77(2):222-230
The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an in vitro model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.
Animals
;
MAP Kinase Kinase Kinases/physiology*
;
Rats
;
Myocytes, Cardiac/pathology*
;
Disulfiram/pharmacology*
;
Cardiomegaly
;
Apoptosis/drug effects*
;
Cell Line
;
Angiotensin II
;
Necroptosis/drug effects*
;
Interleukin-1beta/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Lactones
;
Resorcinols
;
Zearalenone/administration & dosage*
2.Mechanism of puerarin improving myocardial contractile function in myocardial hypertrophy by inhibiting ferroptosis via Nrf2/ARE/HO-1 signaling pathway.
Yan-Dong LIU ; Wei QIAO ; Zhao-Hui PEI ; Guo-Liang SONG ; Wei JIN ; Wei-Bing ZHONG ; Qin-Qin DENG
China Journal of Chinese Materia Medica 2025;50(16):4679-4689
This study aims to explore the specific mechanism by which puerarin inhibits ferroptosis and improves the myocardial contractile function in myocardial hypertrophy through the nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE)/heme oxygenase-1(HO-1) signaling pathway. The hypertrophic cardiomyocyte model was established using phenylephrine, and H9c2 cells were divided into control group, model group, puerarin group, and puerarin+ML385 group. Cell viability and surface area were detected by cell counting kit-8(CCK-8) and immunofluorescence experiments. The mitochondrial membrane potential and Ca~(2+) concentration were measured. The ferroptosis-related indicators were detected by biochemical and fluorescence staining methods. The expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway was detected by Western blot. A myocardial hypertrophy model was established, and 40 rats were randomly divided into sham group, model group, puerarin group, and puerarin+Nrf2 inhibitor(ML385) group, with 10 rats in each group. Echocardiogram, hemodynamic parameters, and myocardial hypertrophy parameters were measured. Histopathological changes of myocardial tissues were observed by hematoxylin and eosin(HE) staining and Masson staining. Biochemical methods, enzyme-linked immunosorbent assay(ELISA), and fluorescence staining were used to detect inflammatory factors and ferroptosis-related indicators. Immunohistochemistry was used to detect the expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway. Cell experiments showed that puerarin intervention significantly enhanced the viability of hypertrophic cardiomyocytes, reduced their surface area, and restored mitochondrial membrane potential and Ca~(2+) homeostasis. Mechanism studies revealed that puerarin promoted Nrf2 nuclear translocation, upregulated the expression of HO-1, solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4), and decreased malondialdehyde(MDA), reactive oxygen species(ROS), and iron levels. These protective effects were reversed by ML385. In animal experiments, puerarin improved cardiac function in rats with myocardial hypertrophy, alleviated myocardial hypertrophy and fibrosis, inhibited inflammatory responses and ferroptosis, and promoted nuclear Nrf2 translocation and HO-1 expression. However, combined intervention with ML385 led to deterioration of hemodynamics and a rebound in ferroptosis marker levels. In conclusion, puerarin may inhibit cardiomyocyte ferroptosis through the Nrf2/ARE/HO-1 signaling pathway, thereby improving myocardial contractile function in myocardial hypertrophy.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Rats
;
Ferroptosis/drug effects*
;
Signal Transduction/drug effects*
;
Isoflavones/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Cardiomegaly/genetics*
;
Myocytes, Cardiac/metabolism*
;
Antioxidant Response Elements/drug effects*
;
Myocardial Contraction/drug effects*
;
Heme Oxygenase-1/genetics*
;
Cell Line
3.The splicing factor HNRNPH1 regulates Circ-MYOCD back-splicing to modulate the course of cardiac hypertrophy.
Rui CAI ; Zhuo HUANG ; Wenxia HE ; Tianhong AI ; Xiaowei SONG ; Shuting HU
Journal of Southern Medical University 2025;45(3):587-594
OBJECTIVES:
To explore the mechanism of Circ-MYOCD back-splicing and its regulatory role in myocardial hypertrophy.
METHODS:
Sanger sequencing and RNase R assays were performed to verify the circularity and stability of Circ-MYOCD, whose subcellular distribution was determined by nuclear-cytoplasmic fractionation. Bioinformatics analysis and mass spectrometry from pull-down assays were conducted to predict the RNA-binding proteins (RBPs) interacting with Circ-MYOCD. In rat cardiomyocytes H9C2 cells, the effects of HNRNPH1 and HNRNPL knockdown and overexpression on Circ-MYOCD back-splicing were evaluated. In a H9C2 cell model of angiotensin II (Ang II)-induced myocardial hypertrophy, the expression of HNRNPH1 was detected, the effects of HNRNPH1 knockdown and overexpression on progression of myocardial hypertrophy were assessed, and the regulatory effect of HNRNPH1 on Circ-MYOCD back-splicing was analyzed.
RESULTS:
Sanger sequencing confirmed that the junction primers could amplify the correct Circ-MYOCD sequence. RNase R and nuclear-cytoplasmic fractionation assays showed that Circ-MYOCD was stable and predominantly localized in the cytoplasm. Bioinformatics analysis and mass spectrometry from the Circ-MYOCD pull-down assay identified HNRNPH1 and HNRNPL as the RBPs interacting with Circ-MYOCD. In H9C2 cells, HNRNPH1 knockdown significantly enhanced while its overexpression inhibited Circ-MYOCD back-splicing; HNRNPH1 overexpression obviously increased the expressions of myocardial hypertrophy markers ANP and BNP, while its knockdown produced the opposite effect. In Ang II-induced H9C2 cells, which exhibited a significant increase of HNRNPH1 expression and increased expressions of ANP and BNP, HNRNPH1 knockdown obviously increased Circ-MYOCD expression, decreased MYOCD expression and lowered both ANP and BNP expressions.
CONCLUSIONS
HNRNPH1 regulates Circ-MYOCD back-splicing to influence the progression of myocardial hypertrophy.
Animals
;
Rats
;
RNA, Circular/genetics*
;
Cardiomegaly/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism*
;
Cell Line
;
RNA Splicing
;
Angiotensin II
;
RNA-Binding Proteins
4.Effect of overexpression of aldehyde dehydrogenase family member A2 on hypertrophic growth and proliferation of cardiomyocytes.
Hang LIU ; Qiqi LIU ; Zhenhua LI ; Xiao YANG ; Jian WANG
Chinese Journal of Biotechnology 2024;40(12):4660-4669
Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing Aldh1a2 (Ad-Aldh1a2) to explore the effects of Aldh1a2 overexpression on the biological function of cardiomyocytes. The results showed that the infection with Ad-Aldh1a2 realized the overexpression of Aldh1a2 in cardiomyocytes. Compared with the control group infected with Ad-GFP, the cardiomyocytes infected with Ad-Aldh1a2 showcased significantly increased size and up-regulated expression levels of the atrial natriuretic factor gene (ANF), brain natriuretic peptide gene (BNP), and β-myosin heavy chain (β-MHC). In addition, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay demonstrated that Aldh1a2 overexpression increased the proportion of cardiomyocytes with positive EdU signals and upregulated the expression levels of proliferation-related genes cyclin D2 (Ccnd2) and budding uninhibited by benzimidazole 1 (Bub1). The above data indicated that overexpression of Aldh1a2 induced hypertrophic growth and proliferation of cardiomyocytes. This study provides a basis for further understanding the function of Aldh1a2 in heart diseases and developing therapies for heart diseases.
Myocytes, Cardiac/cytology*
;
Animals
;
Cell Proliferation
;
Aldehyde Dehydrogenase 1 Family/metabolism*
;
Rats
;
Retinal Dehydrogenase/metabolism*
;
Adenoviridae/metabolism*
;
Cells, Cultured
;
Rats, Sprague-Dawley
;
Cardiomegaly/metabolism*
;
Up-Regulation
;
Aldehyde Dehydrogenase, Mitochondrial
5.Effect and mechanism of leonurine on pressure overload-induced cardiac hypertrophy in rats.
Xiao-Li DING ; Qing-Qing YUAN ; Ding-Jia XUE ; Fu-Ming YANG ; Yi-Zhun ZHU ; Hai-Bing QIAN
China Journal of Chinese Materia Medica 2022;47(2):461-468
To investigate the effects of leonurine(Leo) on abdominal aortic constriction(AAC)-induced cardiac hypertrophy in rats and its mechanism. A rat model of pressure overload-induced cardiac hypertrophy was established by AAC method. After 27-d intervention with high-dose(30 mg·kg~(-1)) and low-dose(15 mg·kg~(-1)) Leo or positive control drug losartan(5 mg·kg~(-1)), the cardiac function was evaluated by hemodynamic method, followed by the recording of left ventricular systolic pressure(LVSP), left ventricular end-diastolic pressure(LVESP), as well as the maximum rate of increase and decrease in left ventricular pressure(±dp/dt_(max)). The degree of left ventricular hypertrophy was assessed based on heart weight index(HWI) and left ventricular mass index(LVWI). Myocardial tissue changes and the myocardial cell diameter(MD) were measured after hematoxylin-eosin(HE) staining. The contents of angiotensin Ⅱ(AngⅡ) and angiotensin Ⅱ type 1 receptor(AT1 R) in myocardial tissue were detected by ELISA. The level of Ca~(2+) in myocardial tissue was determined by colorimetry. The protein expression levels of phospholipase C(PLC), inositol triphosphate(IP3), AngⅡ, and AT1 R were assayed by Western blot. Real-time quantitative PCR(qRT-PCR) was employed to determine the mRNA expression levels of β-myosin heavy chain(β-MHC), atrial natriuretic factor(ANF), AngⅡ, and AT1 R. Compared with the model group, Leo decreased the LVSP, LVEDP, HWI, LVWI and MD values, but increased ±dp/dt_(max) of the left ventricle. Meanwhile, it improved the pathological morphology of myocardial tissue, reduced cardiac hypertrophy, edema, and inflammatory cell infiltration, decreased the protein expression levels of PLC, IP3, AngⅡ, AT1 R, as well as the mRNA expression levels of β-MHC, ANF, AngⅡ, AT1 R, c-fos, and c-Myc in myocardial tissue. Leo inhibited AAC-induced cardiac hypertrophy possibly by influencing the RAS system.
Angiotensin II/metabolism*
;
Animals
;
Cardiomegaly/genetics*
;
Gallic Acid/analogs & derivatives*
;
Hypertrophy, Left Ventricular/pathology*
;
Myocardium/pathology*
;
Rats
6.Fucoxanthin regulates Nrf2/Keap1 signaling to alleviate myocardial hypertrophy in diabetic rats.
Dong Xiao ZHENG ; Lin Lin CHEN ; Qi Hui WEI ; Zi Ran ZHU ; Zi Lue LIU ; Lin JIN ; Guan Yu YANG ; Xi XIE
Journal of Southern Medical University 2022;42(5):752-759
OBJECTIVE:
To investigate the protective effect of fucoxanthin (FX) against diabetic cardiomyopathy and explore the underlying mechanism.
METHODS:
Rat models of diabetes mellitus (DM) induced by intraperitoneal injection of streptozotocin (60 mg/kg) were randomized into DM model group, fucoxanthin treatment (DM+FX) group and metformin treatment (DM+ Met) group, and normal rats with normal feeding served as the control group. In the two treatment groups, fucoxanthin and metformin were administered after modeling by gavage at the daily dose of 200 mg/kg and 230 mg/kg, respectively for 12 weeks, and the rats in the DM model group were given saline only. HE staining was used to examine the area of cardiac myocyte hypertrophy in each group. The expression levels of fibrotic proteins TGF-β1 and FN proteins in rat hearts were detected with Western blotting. In the cell experiment, the effect of 1 μmol/L FX on H9C2 cell hypertrophy induced by exposure to high glucose (HG, 45 mmol/L) was evaluated using FITC-labeled phalloidin. The mRNA expression levels of the hypertrophic factors ANP, BNP and β-MHC in H9C2 cells were detected using qRT-PCR. The protein expressions of Nrf2, Keap1, HO-1 and SOD1 proteins in rat heart tissues and H9C2 cells were determined using Western blotting. The DCFH-DA probe was used to detect the intracellular production of reactive oxygen species (ROS).
RESULTS:
In the diabetic rats, fucoxanthin treatment obviously alleviated cardiomyocyte hypertrophy and myocardial fibrosis, increased the protein expressions of Nrf2 and HO-1, and decreased the protein expressions of Keap1 in the heart tissue (P < 0.05). In H9C2 cells with HG exposure, fucoxanthin significantly inhibited the enlargement of cell surface area, lowered the mRNA expression levels of ANP, BNP and β-MHC (P < 0.05), promoted Nrf2 translocation from the cytoplasm to the nucleus, and up-regulated the protein expressions its downstream targets SOD1 and HO-1 (P < 0.05) to enhance cellular antioxidant capacity and reduce intracellular ROS production.
CONCLUSION
Fucoxanthin possesses strong inhibitory activities against diabetic cardiomyocyte hypertrophy and myocardial fibrosis and is capable of up-regulating Nrf2 signaling to promote the expression of its downstream antioxidant proteins SOD1 and HO-1 to reduce the level of ROS.
Animals
;
Antioxidants/metabolism*
;
Atrial Natriuretic Factor/pharmacology*
;
Cardiomegaly
;
Diabetes Mellitus, Experimental/metabolism*
;
Fibrosis
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Metformin
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
RNA, Messenger/metabolism*
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase-1/pharmacology*
;
Xanthophylls
7.Mouse strain-specific responses of mitochondrial respiratory function and cardiac hypertrophy to isoproterenol treatment.
Shuang-Ling LI ; Shun WANG ; Yuan HE ; Di ZHENG ; Jian LYU ; Ning-Ning GUO ; Ying-Ying GUO ; Li-Li LI ; Ming-Xia FAN ; Zhi-Hua WANG
Acta Physiologica Sinica 2021;73(3):459-470
Cardiac hypertrophy is a common pathological process of various cardiovascular diseases and eventually develops into heart failure. This paper was aimed to study the different pathological characteristics exhibited by different mouse strains after hypertrophy stimulation. Two mouse strains, A/J and FVB/nJ, were treated with isoproterenol (ISO) by osmotic pump to induce cardiac hypertrophy. Echocardiography was performed to monitor heart morphology and function. Mitochondria were isolated from hearts in each group, and oxidative phosphorylation function was assayed in vitro. The results showed that both strains showed a compensatory enhancement of heart contractile function after 1-week ISO treatment. The A/J mice, but not the FVB/nJ mice, developed significant cardiac hypertrophy after 3-week ISO treatment as evidenced by increases in left ventricular posterior wall thickness, heart weight/body weight ratio, cross sectional area of cardiomyocytes and cardiac hypertrophic markers. Interestingly, the heart from A/J mice contained higher mitochondrial DNA copy number compared with that from FVB/nJ mice. Functionally, the mitochondria from A/J mice displayed faster O
Animals
;
Cardiomegaly/chemically induced*
;
Heart Failure
;
Isoproterenol/toxicity*
;
Mice
;
Mitochondria
;
Myocytes, Cardiac/metabolism*
8.Zhenwu Decoction delays ventricular hypertrophy in rats with uremic cardiomyopathy.
Jun LAI ; Yingzhi WU ; Liwei HANG ; Akindavyi GAEL ; Ting DENG ; Quanneng YAN ; Qiang FU ; Zhiliang LI
Journal of Southern Medical University 2019;39(1):113-119
OBJECTIVE:
To investigate the inhibitory effect of Zhenwu Decoction on ventricular hypertrophy in rats with uremic cardiomyopathy and explore the mechanism.
METHODS:
Cardiocytes isolated from suckling rats were divided into control group and indoxyl sulfate (IS) group, and the protein synthesis was assayed with [H]- leucine incorporation and cellular protein expressions were detected using Western blotting. Fifty SD rats were randomly divided into sham operation group, model group, and low- and high-dose Zhenwu Decoction treatment groups, and except for those in the sham operation group, all the rats underwent 5/6 nephrectomy. Four weeks after the operation, the rats in low- and high-dose treatment groups were given Zhenwu Decoction gavage at the dose of 4.5 g/kg and 13.5 g/kg, respectively; the rats in the sham-operated and model groups were given an equal volume of distilled water. After 4 weeks of treatment, serum levels of IS were determined, and cardiac and ventricular mass indexes were measured in the rats; cardiac ultrasound was performed and Western blotting was used to measure the expressions of BNP, p-ERK1/2, p-p38 and p-JNK in the myocardium.
RESULTS:
Rat cardiomyocytes treated with IS showed significantly enhanced protein synthesis and increased expression levels of BNP, p-erk1/2, and p-p38 as compared with the control cells ( < 0.01), but the expression of p-jnk was comparable between the two groups. In the animal experiment, the rats in the model group showed significantly increased serum creatinine (SCr) and urea nitrogen (BUN) levels, 24-h urine protein (24 hUpro), plasma IS level, left ventricular mass index (LVMI) and whole heart mass index (HMI) compared with those in the sham group ( < 0.01); Both LVESD and LVEDD were significantly reduced and LVAWS, LVAWD, LVPWS and LVPWD were significantly increased in the model rat, which also presented with obvious cardiomyocyte hypertrophy and increased myocardial expressions of BNP, p-ERK1/2, p-p38 and p-jnk ( < 0.01). Compared with the rats in the model group, the rats treated with low-dose and high-dose Zhenwu Decoction had significantly lowered levels of SCr, BUN, 24 hUpro and IS ( < 0.05) and decreased LVMI and HMI; LVESD, LVEDD, LVPWS, LVAWS, and LVAWD were improved more obviously in the high-dose group, and the myocardial expressions of BNP, p-ERK1/2, p-p38 and p-JNK was significantly downregulated after the treatment.
CONCLUSIONS
Zhenwu Decoctin can reduce plasma IS levels and inhibit ventricular hypertrophy to delay ventricular remodeling in rats with uremic cardiomyopathy.
Animals
;
Blood Urea Nitrogen
;
Cardiomegaly
;
prevention & control
;
Cardiomyopathies
;
complications
;
Creatinine
;
blood
;
Drugs, Chinese Herbal
;
pharmacology
;
Heart Ventricles
;
Indican
;
blood
;
pharmacology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Nephrectomy
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
9.Aconitine ameliorates cardiomyocyte hypertrophy induced by angiotensin Ⅱ.
Ning-Ning WANG ; Jia WANG ; Hong-Ling TAN ; Yu-Guang WANG ; Yue GAO ; Zeng-Chun MA
China Journal of Chinese Materia Medica 2019;44(8):1642-1647
This paper was aimed to investigate the inhibitory effect of aconitine(AC) on angiotensin Ⅱ(Ang Ⅱ)-induced H9 c2 cell hypertrophy and explore its mechanism of action. The model of hypertrophy was induced by Ang Ⅱ(1×10-6 mol·L-1),and cardiomyocytes were incubated with different concentrations of AC. Western blot was used to quantify the protein expression levels of atrial natriuretic peptide(ANP),brain natriuretic peptide(BNP),β-myosin heavy chain(β-MHC),and α-smooth muscle actin(α-SMA). Real-time quantitative PCR(qRT-PCR) was used to quantify the mRNA expression levels of cardiac hypertrophic markers ANP,BNP and β-MHC. In addition,the fluorescence intensity of the F-actin marker,an important component of myofibrils,was detected by using laser confocal microscope. AC could significantly reverse the increase of total protein content in H9 c2 cells induced by Ang Ⅱ; qRT-PCR results showed that AC could significantly inhibit the ANP,BNP and β-MHC mRNA up-regulation induced by AngⅡ. Western blot results showed that AC could significantly inhibit the ANP,BNP and β-MHC protein up-regulation induced by AngⅡ. In addition,F-actin expression induced by Ang Ⅱ could be inhibited by AC,and multiple indicators of cardiomyocyte hypertrophy induced by Ang Ⅱ could be down-regulated,indicating that AC may inhibit cardiac hypertrophy by inhibiting the expression of hypertrophic factors,providing new clues for exploring the cardiovascular protection of AC.
Aconitine
;
pharmacology
;
Actins
;
metabolism
;
Angiotensin II
;
Atrial Natriuretic Factor
;
metabolism
;
Cardiac Myosins
;
metabolism
;
Cardiomegaly
;
Cells, Cultured
;
Humans
;
Hypertrophy
;
Myocytes, Cardiac
;
drug effects
;
Myosin Heavy Chains
;
metabolism
;
Natriuretic Peptide, Brain
;
metabolism
10.Research progress on miR-21 in heart diseases.
Journal of Zhejiang University. Medical sciences 2019;48(2):214-218
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Cardiomegaly
;
genetics
;
physiopathology
;
Heart Diseases
;
genetics
;
physiopathology
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Myocardium
;
pathology

Result Analysis
Print
Save
E-mail