1.Prediction of Spatial Distance of CAFs-TAECs for Pathological Response to Neoadjuvant Chemoimmunotherapy in Lung Squamous Cell Carcinoma.
Duming YE ; Liying YANG ; Yimin ZHAO ; Yinhui WEN ; Miaoqing ZHAO ; Ligang XING ; Xiaorong SUN
Chinese Journal of Lung Cancer 2025;28(8):576-584
BACKGROUND:
Neoadjuvant therapeutic strategies play a pivotal role in the comprehensive treatment of non-small cell lung cancer (NSCLC). However, lung squamous cell carcinoma (SCC) generally exhibits a more favorable response to neoadjuvant therapy compared with lung adenocarcinoma (ADC). The aim of this study is to elucidate how baseline cancer-associated fibroblasts (CAFs) and tumor-associated endothelial cells (TAECs) influence the differential therapeutic outcomes of neoadjuvant treatment in SCC versus ADC.
METHODS:
We retrospectively collected pretreatment biopsy samples from 104 patients with stage II-III NSCLC who underwent neoadjuvant chemotherapy (NAC) or neoadjuvant chemoimmunotherapy (NAIC) at Shandong Cancer Hospital between January 1, 2018 and December 31, 2023. Tissue microarrays were constructed using an automated arrayer, and multiplex immunofluorescence staining (α-SMA/CD31/CK/DAPI) was performed to identify CAFs (α-SMA+/CK-) and TAECs (CD31+/CK-). Quantitative analyses included CAFs and TAECs densities, the nearest neighbor distance (NND) between CAFs and TAECs, and their spatial proximity (30 μm). Differences in major pathological response (MPR) between groups, defined as residual viable tumor cells ≤10% in resected specimens after neoadjuvant therapy, were assessed using the χ² test. The Mann-Whitney U test was applied to analyze intergroup differences in quantitative indicators, and receiver operating characteristic (ROC) curve analysis was conducted to evaluate the predictive performance of immune-related markers for MPR in the NAIC cohort.
RESULTS:
Among the 104 NSCLC patients who received neoadjuvant therapy, 35 underwent NAIC and 69 received NAC. Overall, patients with SCC were more likely to achieve MPR compared with those with ADC (50.0% vs 22.4%, P=0.006). This trend persisted in the NAIC subgroup (72.7% vs 30.8%, P=0.038), whereas no significant difference in MPR rates was observed between SCC and ADC in the NAC subgroup. At baseline, prior to NAIC or NAC, programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) expression, CAFs and TAECs densities, CAFs-TAECs NND, and CAFs-TAECs proximity (30 μm) showed no significant differences between SCC and ADC. In patients with SCC receiving NAIC, baseline PD-L1/PD-1 expression, CAFs density, and TAECs density showed not significant differences between MPR and NMPR groups. However, the CAFs-TAECs distance was significantly greater in the MPR group (NND: 31.2 vs 24.7 μm, P=0.038), and the number of TAECs within 30 μm of CAFs was significantly lower (proximity: 1.1 vs 3.6, P=0.038). Univariate Cox regression analysis indicated that low TAECs density was associated with MPR following NAIC (OR=36.00, 95%CI: 2.68-1486.88, P=0.019). Furthermore, ROC analysis demonstrated that baseline CAFs-TAECs NND and proximity (30 μm) exhibited strong predictive performance for MPR in SCC patients treated with NAIC, with an area under the curve (AUC) of 0.893, sensitivity of 0.857, and specificity of 1.000.
CONCLUSIONS
CAFs are more spatially distant from TAECs and more prone to MPR after NAIC in SCC, which may be related to the reduced interaction of CAFs with TAECs and reduced tumor-associated angiogenesis.
Humans
;
Lung Neoplasms/therapy*
;
Neoadjuvant Therapy
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
Endothelial Cells/drug effects*
;
Aged
;
Cancer-Associated Fibroblasts/drug effects*
;
Immunotherapy
;
Carcinoma, Squamous Cell/drug therapy*
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Adult
2.Successful in situ 5-aminolevulinic acid photodynamic therapy in a 53-year-old female with cutaneous squamous cell carcinoma.
Limin LUO ; Xiaoling JIANG ; Jianjun QIAO ; Hong FANG ; Jun LI
Journal of Zhejiang University. Science. B 2025;26(9):915-922
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), as certain forms of non-melanoma skin cancer (NMSC) or keratinocyte carcinoma, are the most common forms of malignant neoplasms worldwide (Sharp et al., 2024). BCC and cSCC have been identified as two major components of NMSC, comprising one-third of all malignancies (Burton et al., 2016). Generally speaking, patients with NMSC tend to have relatively favorable survival outcomes, while different histopathological subtypes of NMSC exhibit distinct biological behaviors (Stătescu et al., 2023). Keratinocyte carcinoma, although not considered as deadly as melanoma, tends to metastasize if left untreated (Civantos et al., 2023; Nanz et al., 2024). cSCC can evolve locally, then aggressively metastasize, invade, and even lead to fatal consequences in a subset of patients (Winge et al., 2023). A solid, pigmented, smooth plaque or a hyperkeratotic papule with or without central ulceration and hemorrhage appears to be characteristic of cSCC (Thompson et al., 2016; Zhou et al., 2023). Of note, a rare type of intraepidermal cSCC in situ often appears as a velvety, demarcated, slightly raised erythematous plaque on the genitalia of men (Yamaguchi et al., 2016). Accounting for approximately 16.0% of scalp tumors and with a rising incidence, cSCC is now the second most common NMSC in humans (Verdaguer-Faja et al., 2024). According to the latest statistics, up to 2%‒5% of cSCCs in situ may gradually progress into invasive cSCCs in the final step (Rentroia-Pacheco et al., 2023). Several risk factors for the carcinogenesis and development of cSCC have been identified, including age, accumulative exposure to ultraviolet light radiation A and B, human papillomavirus infection, arsenic ingestion, chronic scarring, xeroderma pigmentosa, a relevant history of ionizing radiation, androgenetic alopecia in males, and immunosuppression therapy (Martinez and Otley, 2001; Welsch et al., 2012; Mortaja and Demehri, 2023).
Humans
;
Aminolevulinic Acid/therapeutic use*
;
Skin Neoplasms/pathology*
;
Photochemotherapy/methods*
;
Female
;
Carcinoma, Squamous Cell/pathology*
;
Middle Aged
;
Photosensitizing Agents/therapeutic use*
;
Carcinoma, Basal Cell/drug therapy*
3.Research progress on the mechanisms of resistance to cetuximab targeted therapy in head and neck squamous cell carcinoma.
Lulu LIU ; Dan LUO ; Wenqing ZHANG ; Zhenfeng SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(6):582-589
Head and neck squamous cell carcinoma (HNSCC) is one of the ten most common cancers worldwide and is one of the refractory cancers with a poor prognosis in otorhinolaryngology-head and neck surgery. Cetuximab is widely used in the clinical treatment of HNSCC and has been approved by the FDA as a first-line chemotherapeutic agent. However, its efficacy varies significantly among different individuals. Therefore, exploring the resistance mechanisms of cetuximab in the treatment of HNSCC and screening for sensitive populations are essential for the precision treatment of head and neck cancer. This article summarizes the research progress on cetuximab resistance mechanisms in HNSCC, and the main aspects include: alterations in epidermal growth factor receptor (EGFR) and its ligands, changes in downstream effectors of EGFR, bypass activation and crosstalk, epithelial-mesenchymal transition, epigenetic modifications, and immunosuppression in the tumor microenvironment.
Humans
;
Cetuximab/therapeutic use*
;
Drug Resistance, Neoplasm
;
Squamous Cell Carcinoma of Head and Neck/drug therapy*
;
Head and Neck Neoplasms/drug therapy*
;
ErbB Receptors/metabolism*
;
Tumor Microenvironment
;
Epithelial-Mesenchymal Transition
;
Molecular Targeted Therapy
;
Antineoplastic Agents, Immunological/therapeutic use*
4.A Cocktail of Natural Compounds Holds Promise for New Immunotherapeutic Potential in Head and Neck Cancer.
Chinese journal of integrative medicine 2024;30(1):42-51
OBJECTIVE:
To obtain detailed understanding on the gene regulation of natural compounds in altering prognosis of head and neck squamous cell carcinomas (HNSC).
METHODS:
Gene expression data of HNSC samples and peripheral blood mononuclear cells (PBMCs) of HNSC patients were collected from Gene Expression Omnibus (GEO). Differential gene expression analysis of GEO datasets were achieved by the GEO2R tool. Common differentially expressed gerres (DEGs) were screened by comparing DEGs of HNSC with those of PBMCs. The combination was further analyzed for regulating pathways and biological processes that were affected.
RESULTS:
Totally 110 DEGs were retrieved and identified to be involved in biological processes related to tumor regulation. Then 102 natural compounds were screened for a combination such that the expression of all 110 commonly DEGs was altered. A combination of salidroside, ginsenoside Rd, oridonin, britanin, and scutellarein was chosen. A multifaceted, multi-dimensional tumor regression was showed by altering autophagy, apoptosis, inhibiting cell proliferation, angiogenesis, metastasis and inflammatory cytokines production.
CONCLUSIONS
This study has helped develop a unique combination of natural compounds that will markedly reduce the propensity of development of drug resistance in tumors and immune evasion by tumors. The result is crucial to developing a combinatorial natural therapeutic cocktail with accentuated immunotherapeutic potential.
Humans
;
Leukocytes, Mononuclear
;
Head and Neck Neoplasms/drug therapy*
;
Squamous Cell Carcinoma of Head and Neck/drug therapy*
;
Immunotherapy
;
Prognosis
5.A Case Report of EGFR-TKIs Resistant Secondary MET Gene Amplified Lung Squamous Cell Carcinoma and Literature Review.
Yalan LIU ; Peng CHEN ; Xinfu LIU
Chinese Journal of Lung Cancer 2024;27(11):878-884
With the rapid development of epidermal growth factor receptor (EGFR) gene testing of lung adenocarcinoma patients has been routinely carried out, EGFR mutations are also possible for some small samples of non-smoking female lung squamous cell carcinoma patients. This increases the opportunity for targeted therapy for this group of patients. However, drug resistance in patients with lung squamous cell carcinoma during targeted therapy is an important factor affecting subsequent treatment. There are multiple mechanisms of acquired drug resistance in targeted therapy, and the alteration of mesenchymal-epithelial transition factor (MET) signaling pathway is one of the common mechanisms of drug resistance. At present, some selective tyrosine kinase inhibitors (TKIs) of MET has been approved for non-small cell lung cancer with MET gene 14 exon skipping mutation, such as Glumetinib, Savolitinib, Tepotinib, Capmatinib, etc. Drugs that target secondary MET amplification are still in clinical trials. This paper retrospectively analyzed the clinical data of a female patient with EGFR-TKIs resistant secondary MET amplified squamous cell lung cancer, and reviewed relevant literature to explore how to optimize the treatment of lung squamous cell carcinoma patients with EGFR mutation, so as to provide clinical reference for the diagnosis and treatment of such patients.
.
Female
;
Humans
;
Carcinoma, Squamous Cell/drug therapy*
;
Drug Resistance, Neoplasm/genetics*
;
ErbB Receptors/antagonists & inhibitors*
;
Gene Amplification
;
Lung Neoplasms/drug therapy*
;
Protein Kinase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-met/genetics*
6.GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma.
Yingxi DU ; Yarui MA ; Qing ZHU ; Yong FU ; Yutong LI ; Ying ZHANG ; Mo LI ; Feiyue FENG ; Peng YUAN ; Xiaobing WANG
Frontiers of Medicine 2023;17(1):119-131
Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Cisplatin/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Growth Differentiation Factor 15/therapeutic use*
;
Receptor, Transforming Growth Factor-beta Type II/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
7.Anticancer Activity of Diosgenin and Its Molecular Mechanism.
Qun-Li REN ; Qian WANG ; Xin-Qun ZHANG ; Miao WANG ; Huan HU ; Jun-Jie TANG ; Xiong-Tong YANG ; Ying-Hui RAN ; Huan-Huan LIU ; Zhi-Xing SONG ; Jian-Guo LIU ; Xiao-Lan LI
Chinese journal of integrative medicine 2023;29(8):738-749
Diosgenin, a steroidal sapogenin, obtained from Trigonella foenum-graecum, Dioscorea, and Rhizoma polgonati, has shown high potential and interest in the treatment of various cancers such as oral squamous cell carcinoma, laryngeal cancer, esophageal cancer, liver cancer, gastric cancer, lung cancer, cervical cancer, prostate cancer, glioma, and leukemia. This article aims to provide an overview of the in vivo, in vitro, and clinical studies reporting the diosgenin's anticancer effects. Preclinical studies have shown promising effects of diosgenin on inhibiting tumor cell proliferation and growth, promoting apoptosis, inducing differentiation and autophagy, inhibiting tumor cell metastasis and invasion, blocking cell cycle, regulating immunity and improving gut microbiome. Clinical investigations have revealed clinical dosage and safety property of diosgenin. Furthermore, in order to improve the biological activity and bioavailability of diosgenin, this review focuses on the development of diosgenin nano drug carriers, combined drugs and the diosgenin derivatives. However, further designed trials are needed to unravel the diosgenin's deficiencies in clinical application.
Male
;
Humans
;
Carcinoma, Squamous Cell/drug therapy*
;
Diosgenin/metabolism*
;
Mouth Neoplasms/drug therapy*
;
Apoptosis
;
Prostatic Neoplasms/drug therapy*
8.Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism.
Pengfei GAO ; Wentao ZHANG ; Yujie LIN ; Ruijie LU ; Zijian LOU ; Gang LU ; Ruolang PAN ; Yunfang CHEN
Journal of Zhejiang University. Science. B 2023;24(12):1151-1158
Oral squamous cell carcinoma (OSCC) is a prevalent malignant tumor affecting the head and neck region (Leemans et al., 2018). It is often diagnosed at a later stage, leading to a poor prognosis (Muzaffar et al., 2021; Li et al., 2023). Despite advances in OSCC treatment, the overall 5-year survival rate of OSCC patients remains alarmingly low, falling below 50% (Jehn et al., 2019; Johnson et al., 2020). According to statistics, only 50% of patients with oral cancer can be treated with surgery. Once discovered, it is more frequently at an advanced stage. In addition, owing to the aggressively invasive and metastatic characteristics of OSCC, most patients die within one year of diagnosis. Hence, the pursuit of novel therapeutic drugs and treatments to improve the response of oral cancer to medication, along with a deeper understanding of their effects, remains crucial objectives in oral cancer research (Johnson et al., 2020; Bhat et al., 2021; Chen et al., 2023; Ruffin et al., 2023).
Humans
;
Mouth Neoplasms/pathology*
;
Carcinoma, Squamous Cell/metabolism*
;
Luteolin/therapeutic use*
;
Squamous Cell Carcinoma of Head and Neck/drug therapy*
;
Head and Neck Neoplasms/drug therapy*
;
Cell Line, Tumor
9.Cordycepin, a metabolite of Cordyceps militaris, inhibits xenograft tumor growth of tongue squamous cell carcinoma in nude mice.
Qingwei ZHENG ; Yidan SHAO ; Wanting ZHENG ; Yingxu ZOU
Journal of Southern Medical University 2023;43(6):873-878
OBJECTIVE:
To evaluate the inhibitory effect of cordycepin on oral cancer xenograft in nude mice and explore the underlying mechanisms.
METHODS:
Sixteen BALB/c mice bearing subcutaneous human tongue squamous cell carcinoma (TSCC) TCA-8113 cell xenografts were randomized into model group and cordycepin treatment group for daily treatment with saline and cordycepin for 4 weeks. After the treatment, the tumor xenografts were dissected and weighed to assess the tumor inhibition rate. Histological changes in the heart, spleen, liver, kidney, and lung of the mice were evaluated with HE staining, and tumor cell apoptosis was examined using TUNEL staining; The expressions of Bax, Bcl-2, GRP78, CHOP, and caspase-12 in the xenografts were detected using RT-qPCR and Western blotting.
RESULTS:
Cordycepin treatment resulted in a tumor inhibition rate of 56.09% in the nude mouse models, induced obvious changes in tumor cell morphology and significantly enhanced apoptotic death of the tumor cells without causing pathological changes in the vital organs. Cordycepin treatment also significantly reduced Bcl-2 expression (P < 0.05) and increased Bax, GRP78, CHOP, and caspase-12 expressions at both the RNA and protein levels in the tumor tissues.
CONCLUSION
Cordycepin treatment can induce apoptotic death of TCA-8113 cell xenografts in nude mice via the endogenous mitochondrial pathway and endoplasmic reticulum stress pathways.
Humans
;
Animals
;
Mice
;
Carcinoma, Squamous Cell/drug therapy*
;
Heterografts
;
Mice, Nude
;
Tongue Neoplasms/drug therapy*
;
Cordyceps
;
Caspase 12
;
Endoplasmic Reticulum Chaperone BiP
;
bcl-2-Associated X Protein
;
Tongue
10.Lung Squamous Cell Carcinoma with EML4-ALK Fusion and TP53 Co-mutation Treated with Ensartinib: A Case Report and Literature Review.
Donglai LV ; Chunwei XU ; Chong WANG ; Qiuju SANG
Chinese Journal of Lung Cancer 2023;26(1):78-82
Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Anaplastic Lymphoma Kinase/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Mutation
;
Cytoskeletal Proteins/genetics*
;
Lung/pathology*
;
Oncogene Proteins, Fusion/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Tumor Suppressor Protein p53/genetics*

Result Analysis
Print
Save
E-mail