1.Expert consensus on the diagnosis and treatment of advanced non-small cell lung cancer with EGFR PACC mutations (2025 edition).
Chinese Journal of Oncology 2025;47(9):811-829
Lung cancer is the malignancy with the highest incidence and mortality burden globally, ranking first in both morbidity and mortality among all types of malignant tumors. Pathologically, lung cancer is classified into non-small cell lung cancer (NSCLC) and small cell lung cancer, with NSCLC accounting for approximately 85% of cases. Due to the often subtle or nonspecific clinical manifestations in early-stage disease, many patients are diagnosed at a locally advanced or metastatic stage, where treatment options are limited and prognosis remains poor. Therefore, molecular targeted therapy focusing on driver genes has become a key strategy to improve the survival outcomes of patients with advanced NSCLC. The epidermal growth factor receptor (EGFR) is one of the most common driver genes in NSCLC. While EGFR mutations occur in approximately 12% of advanced NSCLC patients globally, the incidence rises to 55.9% in Chinese patients. Among EGFR mutations, P-loop and αC-helix compressing (PACC) mutations account for about 12.5%. Currently, EGFR tyrosine kinase inhibitors (TKIs) have become the first-line standard treatment for advanced NSCLC patients with classical EGFR mutations, with efficacy well-established through clinical studies and real-world evidence. However, with rapid advancements in NSCLC precision medicine and deeper exploration of the EGFR mutation spectrum, EGFR PACC mutations have emerged as a key clinical focus. The structural characteristics of these mutations lead to significant variability in responses to EGFR TKIs, leaving therapeutic options still limited, while detection challenges persist due to the sensitivity constraints of current testing technologies, driving increasing demand for improved diagnostic and treatment approaches. The current clinical evidence primarily stems from retrospective analyses and small-scale exploratory studies, while prospective, large-scale, high-level evidence-based medical research specifically targeting this mutation subtype remains notably insufficient. This evidence gap has consequently led to the absence of standardized guidelines or expert consensus regarding optimal treatment strategies for advanced NSCLC with EGFR PACC mutations. As a clinical consensus specifically addressing EGFR PACC-mutant NSCLC, this document provides a comprehensive framework encompassing the clinical rationale for EGFR PACC mutation testing, therapeutic strategies for advanced-stage disease, management of treatment-related adverse events, and follow-up protocols. The consensus underscores the pivotal role of EGFR PACC mutation detection in precision medicine implementation while offering evidence-based recommendations to guide personalized therapeutic decision-making. By establishing clear clinical pathways encompassing molecular testing, therapeutic intervention, and long-term monitoring for EGFR PACC-mutant NSCLC, this consensus aims to meaningfully improve patient survival outcomes while serving as a robust, evidence-based foundation for developing personalized clinical management approaches.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
ErbB Receptors/antagonists & inhibitors*
;
Mutation
;
Lung Neoplasms/pathology*
;
Protein Kinase Inhibitors/therapeutic use*
;
Molecular Targeted Therapy
;
Consensus
2.Expert consensus on diagnosis and treatment of advanced non-small cell lung cancer with HER-2 alterations (2025 edition).
Chinese Journal of Oncology 2025;47(9):830-839
Mutations in the human epidermal growth factor receptor 2 (HER-2) gene are recognized as significant but relatively rare driver alterations in non-small cell lung cancer (NSCLC). These mutations predominantly manifest as gene mutation, amplification, and protein overexpression, with an estimated prevalence from 2.8% to 15.4% among NSCLC patients in China. Research indicates that HER-2 mutations, particularly exon 20 insertions (ex20ins), are strongly correlated with aggressive tumor biology, poor prognosis, and limited responsiveness to immunotherapy, thereby exhibiting characteristics of "cold tumors". Overexpression and amplification of HER-2 are also indicative of a heightened risk of chemotherapy resistance and unfavorable survival outcomes, suggesting a distinct molecular subtype with unique biological behaviors. In recent years, novel antibody-drug conjugates (ADCs), particularly trastuzumab deruxtecan (T-DXd), have demonstrated groundbreaking efficacy in HER-2-mutant advanced NSCLC patients. These ADCs have shown significant clinical benefits, including high objective response rates and progression-free survival advantages, making T-DXd the first targeted therapy approved for this patient population globally. Additionally, ADCs have exhibited therapeutic potential in patients with HER-2 overexpression, thus broadening the scope of their indications. To standardize the clinical diagnosis and treatment of HER-2 variant NSCLC, the Chinese Anti-cancer Association convened multidisciplinary experts from oncology, pulmonology, thoracic surgery, pathology, and molecular diagnostics to develop this consensus based on the latest evidences from both domestic and international studies, coupled with China's clinical practice experience. This consensus focuses on the molecular characteristics, clinical significance, diagnostic strategies, treatment options, and safety management of HER-2 alterations, addressing ten critical clinical questions in a systematic manner. It is recommended that HER-2 status be routinely tested at initial diagnosis, disease progression, or recurrence in NSCLC. Mutation detection should prioritize next-generation sequencing (NGS), while protein overexpression may be assessed using immunohistochemistry (IHC) standards for gastric cancer. Fluorescence in situ hybridization (FISH) is recommended for detecting HER-2 amplification. Regarding treatment, for HER-2-mutant patients, first-line therapy may involve chemotherapy with or without immune checkpoint inhibitors (ICIs), similar to treatment approaches for driver-gene negative populations. Upon failure of first-line treatment, trastuzumab deruxtecan, may be considered as alternative therapeutic options. For patients with HER-2 overexpression, ADCs should be considered after failure of standard systemic therapy. However, the management of HER-2 amplification remains insufficiently supported by evidence, necessitating a cautious, individualized approach. The consensus also includes detailed recommendations for screening and managing adverse effects associated with ADCs, such as interstitial lung disease (ILD), emphasizing the crucial role of safety management in ensuring treatment efficacy. The publication of this consensus aims to drive the standardization of molecular diagnosis and treatment pathways for HER-2 variant NSCLC, improve clinical outcomes and quality of life for patients, and facilitate the implementation of personalized precision treatment strategies.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Receptor, ErbB-2/metabolism*
;
Mutation
;
Immunoconjugates/therapeutic use*
;
Consensus
;
Trastuzumab/therapeutic use*
;
Camptothecin/analogs & derivatives*
3.Circulating tumor DNA- and cancer tissue-based next-generation sequencing reveals comparable consistency in targeted gene mutations for advanced or metastatic non-small cell lung cancer.
Weijia HUANG ; Kai XU ; Zhenkun LIU ; Yifeng WANG ; Zijia CHEN ; Yanyun GAO ; Renwang PENG ; Qinghua ZHOU
Chinese Medical Journal 2025;138(7):851-858
BACKGROUND:
Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing.
METHODS:
Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS.
RESULTS:
A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% (48/85) had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Patients with advanced diseases and metastases to other organs would be suitable for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS.
CONCLUSION
ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Circulating Tumor DNA/blood*
;
High-Throughput Nucleotide Sequencing/methods*
;
Female
;
Male
;
Lung Neoplasms/pathology*
;
Middle Aged
;
Mutation/genetics*
;
Aged
;
Adult
;
Aged, 80 and over
4.Clinical Practice Guidelines for the Management of Brain Metastases from Non-small Cell Lung Cancer with Actionable Gene Alterations in China (2025 Edition).
Chinese Journal of Lung Cancer 2025;28(1):1-21
Brain metastasis has emerged as a significant challenge in the comprehensive management of patients with non-small cell lung cancer (NSCLC), particularly in those harboring driver gene mutations. Traditional treatments such as radiotherapy and surgery offer limited clinical benefits and are often accompanied by cognitive dysfunction and a decline in quality of life. In recent years, novel small molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and other pathways have been developed, effectively penetrating the blood-brain barrier while enhancing intracranial drug concentrations and improving patient outcomes. This advancement has transformed the treatment landscape for brain metastases in NSCLC. Consequently, the Lung Cancer Medical Education Committee of the Chinese Medical Education Association and the Brain Metastasis Collaboration Group of the Lung Cancer Youth Expert Committee of the Beijing Medical Reward Foundation have jointly initiated and formulated the Clinical Practice Guidelines for the Management of Brain Metastases from Non-small Cell Lung Cancer with Actionable Gene Alterations in China (2025 Edition). This guideline integrates the latest research findings with clinical experience, adhering to multidisciplinary treatment principles, and encompasses aspects such as diagnosis, timing of intervention, and systemic and local treatment options for driver gene positive NSCLC brain metastases. Additionally, it proposes individualized treatment strategies tailored to different driver gene types, aiming to provide clinicians with a reference to enhance the overall diagnostic and therapeutic standards for NSCLC brain metastases in China.
.
Humans
;
Brain Neoplasms/drug therapy*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
China
;
Lung Neoplasms/genetics*
5.Comprehensive Analysis of the Expression, Prognosis and Function of TRAF Family Proteins in NSCLC.
Yixuan WANG ; Qiang CHEN ; Yaguang FAN ; Shuqi TU ; Yang ZHANG ; Xiuwen ZHANG ; Hongli PAN ; Xuexia ZHOU ; Xuebing LI
Chinese Journal of Lung Cancer 2025;28(3):183-194
BACKGROUND:
Currently, lung cancer is one of the malignant tumors with a high morbidity and mortality all over the world. However, the exact mechanisms underlying lung cancer progression remain unclear. The tumor necrosis factor receptor associated factor (TRAF) family members are cytoplasmic adaptor proteins, which function as both adaptor proteins and ubiquitin ligases to regulate diverse receptor signalings, leading to the activation of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling. The aim of this study was to investigate the expression of TRAFs in different tissues and cancer types, as well as its mRNA expression, protein expression, prognostic significance and functional enrichment analysis in non-small cell lung cancer (NSCLC), in order to provide new strategies for the diagnosis and treatment of NSCLC.
METHODS:
RNA sequencing data from the The Genotype-Tissue Expression database was used to analyze the expression patterns of TRAF family members in different human tissues. RNA sequencing data from the Cancer Cell Line Encyclopedia database was used to analyze the expression patterns of TRAF family members in different types of cancer cell lines. RNA sequencing data from the The Cancer Genome Atlas (TCGA) database was used to analyze the mRNA levels of TRAF family members across different types of human cancers. Immunohistochemistry (IHC) analyses from HPA database were used to analyze the TRAF protein levels in NSCLC [lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC)]. Overall survival analysis was performed by Log-rank test using original data from Kaplan-Meier Plotter database to evaluate the correlation between TRAF expressions and prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on the TRAF family-related genes using RNA sequencing data from the TCGA database for NSCLC. The correlation between the expression levels of TRAF family members and the tumor immune microenvironment was analyzed using the ESTIMATE algorithm based on RNA sequencing data from the TCGA database.
RESULTS:
The TRAF family members exhibited significant tissue-specific expression heterogeneity. TRAF2, TRAF3, TRAF6 and TRAF7 were widely expressed in most tissues, while the expressions of TRAF1, TRAF4 and TRAF5 were restricted to specific tissues. The expressions of TRAF family members were highly specific among different types of cancer cell lines. In mRNA database of LUAD and LUSC, the expressions of TRAF2, TRAF4, TRAF5 and TRAF7 were significantly upregulated; while TRAF6 did the opposite; moveover, TRAF1 and TRAF3 only displayed a significant upregulation in LUAD and LUSC, respectively. Except for TRAF3, TRAF4 and TRAF7, other TRAF proteins displayed an obviously deeper IHC staining in LUAD and LUSC tissues compared with normal tissues. Additionally, patients with higher expression levels of TRAF2, TRAF4 and TRAF7 had shorter overall survival; while patients with higher expression levels of TRAF3, TRAF5 and TRAF6 had significantly longer overall survival; however, no significant difference had been observed between TRAF1 expression and the overall survival. TRAF family members differentially regulated multiple pathways, including NF-κB, immune response, cell adhesion and RNA splicing. The expression levels of TRAF family members were closely associated with immune cell infiltration and stromal cell content in the tumor immune microenvironment, with varying positive and negative correlations among different members.
CONCLUSIONS
TRAF family members exhibit highly specific expression differences across different tissues and cancer types. Most TRAF proteins exhibit upregulation at both mRNA and protein levels in NSCLC, whereas, only upregulated expressions of TRAF2, TRAF4 and TRAF7 predict worse prognosis. The TRAF family members regulate processes such as inflammation, immunity, adhesion and splicing, and influence the tumor immune microenvironment.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/mortality*
;
Prognosis
;
Gene Expression Regulation, Neoplastic
;
Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism*
6.Research Progress and Applications of ZDHHC-mediated Protein Palmitoylation in the Development and Immune Escape of Non-small Cell Lung Cancer.
Wangcheng CHEN ; Lili PANG ; Yuemei LAN ; Yanhong SHI ; Bingbing WEN ; Baihong ZHANG
Chinese Journal of Lung Cancer 2025;28(4):319-324
Non-small cell lung cancer (NSCLC), a leading cause of cancer-related deaths worldwide, remains a significant clinical challenge despite advances in immune checkpoint inhibitors therapy, with drug resistance persisting as a major obstacle. Palmitoylation, a critical post-translational modification (PTM) primarily catalyzed by palmitoyltransferases of the zinc finger DHHC-type (ZDHHC), has recently demonstrated important implications in NSCLC. This review aims to elucidate the mechanisms and clinical potential of ZDHHC-mediated protein palmitoylation in NSCLC progression and immune escape.
.
Humans
;
Lipoylation
;
Lung Neoplasms/pathology*
;
Acyltransferases/genetics*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Animals
7.Efficacy and Safety Evaluation of Intrathecal Pemetrexed in EGFR-mutated NSCLC Patients with Leptomeningeal Metastases.
Tianli ZHANG ; Xin CHEN ; Cheng JIANG ; Yongjuan LIN ; Yu XIE ; Huiying LI ; Zhenyu YIN ; Tingting YU
Chinese Journal of Lung Cancer 2025;28(8):567-575
BACKGROUND:
The incidence of leptomeningeal metastasis (LM) in patients with advanced non-small cell lung cancer (NSCLC) is increasing gradually. However, it poses therapeutic challenges due to limited effective interventions. Intrathecal Pemetrexed (IP) holds broad application prospects in the therapeutic domain of LM. This study aims to evaluate the efficacy, safety, and optimal combination strategies of IP in NSCLC-LM patients with epidermal growth factor receptor (EGFR) mutation-positive status, with the aim of providing real-world data support for exploring more precise personalized treatment strategies for these patients.
METHODS:
104 EGFR-mutated NSCLC-LM patients who received IP treatment at Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School from January 2018 to June 2024 were analyzed retrospectively. Clinical parameters, treatment regimens, and survival outcomes were collected. The overall survival (OS), progression-free survival (PFS), clinical response rate and adverse events (AEs) were evaluated.
RESULTS:
The cohort demonstrated a median PFS of 9.6 months and OS of 13.0 months with 6-month and 1-year OS rates of 80.8% and 56.5%, respectively. Clinical response was observed in 77.9% of patients. The common AEs were myelosuppression (58.7%) and elevation of hepatic aminotransferases (25.0%). Nine (8.7%) patients experienced grade 4 myelosuppression and recovered to normal after receiving symptomatic treatment. Subgroup analyses revealed prolonged OS in patients with Karnofsky performance status (KPS) ≥60 versus <60 (14.4 vs 9.0 months, P=0.0022) and those receiving Bevacizumab therapy versus not (19.2 vs 10.5 months, P=0.0011).
CONCLUSIONS
IP exhibits promising efficacy and manageable toxicity in EGFR-mutated NSCLC-LM patients. When combined with Bevacizumab, it exerts synergistic antitumor effects with the potential to further improve clinical outcomes.
Humans
;
Pemetrexed/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/pathology*
;
ErbB Receptors/genetics*
;
Aged
;
Mutation
;
Adult
;
Retrospective Studies
;
Injections, Spinal
;
Meningeal Neoplasms/genetics*
;
Treatment Outcome
;
Aged, 80 and over
8.Advances in Targeted Therapy for Advanced Non-small Cell Lung Cancer with HER2 Mutation.
Chinese Journal of Lung Cancer 2025;28(8):612-620
Human epidermal growth factor receptor 2 (HER2) mutations play a role as a driver gene in non-small cell lung cancer (NSCLC). Patients with advanced NSCLC harboring HER2 mutations exhibit poor responses to conventional chemotherapy and immunotherapy, hence targeted therapies against HER2 are under extensive investigation. This review analyzes the biological characteristics of HER2, an overview of clinical trials for targeted therapy drugs, including monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and antibody-drug conjugate, and research directions for drug resistance in NSCLC. Currently, Pyrotinib and Trastuzumab deruxtecan have been approved for the treatment of advanced NSCLC with HER2 mutations, suitable for patients who have failed standard therapy, which is far from meeting the clinical demands. Novel selective HER2 TKIs are gradually emerging. Future exploration trends are gradually shifting from single drugs to combination strategies, and are exploring more precise selection strategies as well as research on resistance mechanisms. These studies will provide a theoretical basis for clinical treatment strategies for advanced NSCLC with HER2 mutations, promoting the development of personalized therapy.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Receptor, ErbB-2/metabolism*
;
Mutation
;
Molecular Targeted Therapy
;
Protein Kinase Inhibitors/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
9.A Case of Metastatic Non-small Cell Lung Cancer with Rare BRAF p.L485_T488delinsF Mutation Treated with Dabrafenib and Trametinib.
Yunfei WANG ; Wen ZHAO ; Chuang YANG ; Rongyu ZHANG ; Chengjun WANG ; Chunyan HAN ; Jisheng LI
Chinese Journal of Lung Cancer 2025;28(8):638-643
The v-Raf murine sarcoma viral oncogene homolog B (BRAF) gene is one of the most critical proto-oncogenes and functions as a key regulator in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway. The incidence of BRAF mutations in non-small cell lung cancer (NSCLC) patients ranges from 1.5% to 5.5%, with BRAF V600 mutations accounting for approximately 30%-50% of all BRAF mutations, among which BRAF V600E represents the most prevalent mutation type. Currently, the combination of Dabrafenib and Trametinib has been recommended as first-line therapy for BRAF V600-mutant NSCLC by multiple domestic and international guidelines including National Comprehensive Cancer Network (NCCN), European Society of Medical Oncology (ESMO), and Chinese Society of Clinical Oncology (CSCO). However, there are no clear targeted treatment recommendations for BRAF non-V600 mutations. Although case reports suggest that Dabrafenib combined with Trametinib may be effective for patients with BRAF non-V600 mutations, the efficacy and safety require further validation due to limited sample size and lack of large-scale clinical trial data. This article reports a case of NSCLC with a rare BRAF insertion and deletion mutation that responded well to the treatment of Dabrafenib in combination with Trametinib, aiming to enhance clinicians' understanding of such NSCLC cases with extremely rare mutation and provide a reference for future treatment strategies.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Imidazoles/administration & dosage*
;
Lung Neoplasms/pathology*
;
Mutation
;
Neoplasm Metastasis
;
Oximes/administration & dosage*
;
Proto-Oncogene Mas
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyridones/administration & dosage*
;
Pyrimidinones/administration & dosage*
10.Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer.
Ke CHANG ; Li-Fei ZHU ; Ting-Ting WU ; Si-Qi ZHANG ; Zi-Cheng YU
Chinese journal of integrative medicine 2025;31(4):347-356
OBJECTIVE:
To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC).
METHODS:
The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms.
RESULTS:
Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3.
CONCLUSION
Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Diterpenes, Kaurane/chemistry*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Humans
;
Network Pharmacology
;
Lung Neoplasms/pathology*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Reproducibility of Results
;
Gene Ontology

Result Analysis
Print
Save
E-mail