1.Optimization of promoter screening for heterologous expression of carbonic anhydrase and characterization of its enzymatic properties and carbon sequestration performance.
Dandan YAO ; Yunhui LI ; Xingjia FU ; Hui WANG ; Yun LIU
Chinese Journal of Biotechnology 2025;41(4):1588-1604
In this study, high-throughput promoter screening was employed to optimize the heterologous expression of Mesorhizobium loti carbonic anhydrase (MlCA) in order to reduce the costs associated with carbon capture and storage (CCS). To simplify the complexity of traditional vectors, a fusion protein expression system was constructed using superfolder green fluorescent protein (sfGFP) and MlCA. The synthetic promoter library in Escherichia coli was utilized for efficient one-step screening. Based on fluorescence intensity on agar plates, a total of 143 monoclonal colonies were identified, forming a library with varying expression levels. The top four recombinants with the highest fluorescence intensity were selected, among which MlCA driven by the promoter 342042/+ exhibited the highest enzymatic activity, with a specific activity of the 34.6 Wilbur-Anderson units (WAU)/mg. Optimization experiments revealed that MlCA exhibited the best performance when cultured for 4 days under pH 7.0 and 40 ℃ conditions. The Michaelis constant (Km·hdy) and maximum reaction rate (Vmax·hdy) for CO2 hydration were determined to be 62.46 mmol/L and 0.164 mmol/(s·L), respectively. For esterase hydrolysis, MlCA showed the Km and Vmax of 639.8 mmol/L and 0.035 mmol/(s·L), respectively. MlCA accelerated the CO2 hydration process, promoting CO2 mineralized into CaCO3 within 9 min at low pH and room temperature conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed that the precipitated product was calcite. This study provides a low-cost and environmentally friendly alternative for future CCS applications.
Carbonic Anhydrases/biosynthesis*
;
Promoter Regions, Genetic/genetics*
;
Escherichia coli/metabolism*
;
Carbon Sequestration
;
Carbon Dioxide/metabolism*
;
Green Fluorescent Proteins/metabolism*
2.Hypoxia induces down-regulation of estrogen receptor alpha in human breast cancer.
Guang-yu LIU ; Kun-wei SHEN ; Zhi-min SHAO ; Zhen-zhou SHEN
Chinese Journal of Oncology 2004;26(11):664-668
OBJECTIVETo demonstrate the impact of hypoxia on ER-alpha in both breast cancer tissue and cell line, and its relationship with hypoxia-related parameters.
METHODSExpression of ER-alpha in 51 breast cancer patients with ER positive determined by ligand-binding assay was examined by immunohistochemistry and compared with CA-IX and Glut-1. Impact of hypoxia on breast cancer cell line MCF-7 (ER-alpha positive) was observed by Western Blot and RT-PCR.
RESULTSOf 51 breast cancer patients, 49 were ER-alpha positive. Regional decrease of ER-alpha expression was consistently observed in peri-necrotic regions as compared to distant regions in both in-situ carcinomas (n=29, P <0.0001) and invasive carcinomas (n=20, P=0.0001), which was closely associated with the induction of CA-IX and Glut-1 in hypoxia (P <0.0001). The decreased expression of ER-alpha protein and mRNA in breast cancer cell lines were attributed to hypoxia and not to other stress factors, such as reduced glucose, low pH, and products released from necrotic or hypoxic cells. Chronic intermittent hypoxia could cause persistent down-regulation of ER-alpha in the MCF-7 breast cancer cell line.
CONCLUSIONRegional hypoxia in breast cancer is associated with the reduced ER-alpha expression, and intermittent hypoxia can cause persistent down-regulation. Hypoxia may therefore contribute to the progression of ER-alpha negative status and potentially to the development of resistance to endocrine therapy.
Antigens, Neoplasm ; metabolism ; Breast ; metabolism ; pathology ; Breast Neoplasms ; metabolism ; pathology ; Carbonic Anhydrase IX ; Carbonic Anhydrases ; metabolism ; Carcinoma in Situ ; metabolism ; pathology ; Carcinoma, Ductal, Breast ; metabolism ; pathology ; Cell Hypoxia ; Cell Line, Tumor ; Down-Regulation ; Estrogen Receptor alpha ; genetics ; metabolism ; Female ; Glucose Transporter Type 1 ; Humans ; Hypoxia ; metabolism ; Monosaccharide Transport Proteins ; metabolism ; RNA, Messenger ; biosynthesis ; genetics

Result Analysis
Print
Save
E-mail