1.Effect of graphene-oxide-modified osteon-like concentric microgrooved surface on the osteoclastic differentiation of macrophages.
Hong WANG ; Qinglin WU ; Yingzhen LAI ; Yihuang CAI
West China Journal of Stomatology 2023;41(2):165-174
OBJECTIVES:
This study aimed to investigate the effect of new biomimetic micro/nano surfaces on the osteoclastic differentiation of RAW264.7 macrophages by simulating natural osteons for the design of concentric circular structures and modifying graphene oxide (GO).
METHODS:
The groups were divided into smooth titanium surface group (SS), concentric microgrooved titanium surface group (CMS), and microgroove modified with GO group (GO-CMS). The physicochemical properties of the material surfaces were studied using scanning electron microscopy (SEM), contact-angle measurement, atomic force microscopy, X-ray photoelectron spectroscopy analysis, and Raman spectroscopy. The effect of the modified material surface on the cell biological behavior of RAW264.7 was investigated by cell-activity assay, SEM, and laser confocal microscopy. The effect on the osteoclastic differentiation of macrophages was investiga-ted by tartrate-resistant acid phosphatase (TRAP) immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR) experiments.
RESULTS:
Macrophages were arranged in concentric circles along the microgrooves, and after modification with GO, the oxygen-containing groups on the surface of the material increased and hydrophilicity increased. Osteoclasts in the GO-CMS group were small in size and number and had the lowest TRAP expression. Although it promoted the proliferation of macrophages in the GO-CMS group, the expression of osteoclastic differentiation-related genes was lower than that in the SS group, and the difference was statistically significant (P<0.05).
CONCLUSIONS
Concentric circular microgrooves restricted the fusion of osteoclasts and the formation of sealing zones. Osteomimetic concentric microgrooves modified with GO inhibited the osteoclastic differentiation of RAW 264.7 macrophages.
Graphite/pharmacology*
;
Titanium/pharmacology*
;
Haversian System
;
Macrophages
;
Cell Differentiation
;
Oxides/pharmacology*
;
Surface Properties
2.The degradation of plastics and the production of polyhydroxyalkanoates (PHA).
Zonghao ZHANG ; Hongtao HE ; Xu ZHANG ; Shuang ZHENG ; Taoran ZHENG ; Xu LIU ; Guoqiang CHEN
Chinese Journal of Biotechnology 2023;39(5):2053-2069
In recent years, the petroleum-based plastic pollution problem has been causing global attention. The idea of "degradation and up-cycling of plastics" was proposed for solving the environmental pollution caused by non-degradable plastics. Following this idea, plastics would be firstly degraded and then reconstructed. Polyhydroxyalkanoates (PHA) can be produced from the degraded plastic monomers as a choice to recycle among various plastics. PHA, a family of biopolyesters synthesized by many microbes, have attracted great interest in industrial, agricultural and medical sectors due to its biodegradability, biocompatibility, thermoplasticity and carbon neutrality. Moreover, the regulations on PHA monomer compositions, processing technology, and modification methods may further improve the material properties, making PHA a promising alternative to traditional plastics. Furthermore, the application of the "next-generation industrial biotechnology (NGIB)" utilizing extremophiles for PHA production is expected to enhance the PHA market competitiveness, promoting this environmentally friendly bio-based material to partially replace petroleum-based products, and achieve sustainable development with carbon-neutrality. This review summarizes the basic material properties, plastic upcycling via PHA biosynthesis, processing and modification methods of PHA, and biosynthesis of novel PHA.
Polyhydroxyalkanoates
;
Plastics
;
Biotechnology
;
Petroleum
;
Carbon
3.Preface for special issue on chemical bioproduction.
Chinese Journal of Biotechnology 2023;39(6):2101-2107
Engineering efficient enzymes or microbial cell factories should help to establish green bio-manufacturing process for chemical overproduction. The rapid advances and development in synthetic biology, systems biology and enzymatic engineering accerleate the establishing feasbile bioprocess for chemical biosynthesis, including expanding the chemical kingdom and improving the productivity. To consolidate the latest advances in chemical biosynthesis and promote green bio-manufaturing, we organized a special issue on chemical bioproduction that including review or original research papers about enzymatic biosynthesis, cell factory, one-carbon based biorefinery and feasible strategies. These papers comprehensively discussed the latest advaces, the challenges as well as the possible solutions in chemical biomanufacturing.
Synthetic Biology
;
Carbon
;
Metabolic Engineering
4.Light-driven CO2 conversion system: construction, optimization and application.
Yamei GAN ; Liang GUO ; Cong GAO ; Wei SONG ; Jing WU ; Liming LIU ; Xiulai CHEN
Chinese Journal of Biotechnology 2023;39(6):2390-2409
The use of light energy to drive carbon dioxide (CO2) reduction for production of chemicals is of great significance for relieving environmental pressure and solving energy crisis. Photocapture, photoelectricity conversion and CO2 fixation are the key factors affecting the efficiency of photosynthesis, and thus also affect the efficiency of CO2 utilization. To solve the above problems, this review systematically summarizes the construction, optimization and application of light-driven hybrid system from the perspective of combining biochemistry and metabolic engineering. We introduce the latest research progress of light-driven CO2 reduction for biosynthesis of chemicals from three aspects: enzyme hybrid system, biological hybrid system and application of these hybrid system. In the aspect of enzyme hybrid system, many strategies were adopted such as improving enzyme catalytic activity and enhancing enzyme stability. In the aspect of biological hybrid system, many methods were used including enhancing biological light harvesting capacity, optimizing reducing power supply and improving energy regeneration. In terms of the applications, hybrid systems have been used in the production of one-carbon compounds, biofuels and biofoods. Finally, the future development direction of artificial photosynthetic system is prospected from the aspects of nanomaterials (including organic and inorganic materials) and biocatalysts (including enzymes and microorganisms).
Carbon Dioxide/metabolism*
;
Photosynthesis
;
Metabolic Engineering
5.Genetic modification of acetogens and optimization of fermentation process in C1-gas bioconversion.
Sai WAN ; Haoming WANG ; Xiaoqing MA ; Yang TAN ; Licheng LIU ; Fuli LI
Chinese Journal of Biotechnology 2023;39(6):2410-2429
The current linear economy model relies on fossil energy and increases CO2 emissions, which contributes to global warming and environmental pollution. Therefore, there is an urgent need to develop and deploy technologies for carbon capture and utilization to establish a circular economy. The use of acetogens for C1-gas (CO and CO2) conversion is a promising technology due to high metabolic flexibility, product selectivity, and diversity of the products including chemicals and fuels. This review focuses on the physiological and metabolic mechanisms, genetic and metabolic engineering modifications, fermentation process optimization, and carbon atom economy in the process of C1-gas conversion by acetogens, with the aim to facilitate the industrial scale-up and carbon negative production through acetogen gas fermentation.
Fermentation
;
Gases/metabolism*
;
Carbon Dioxide/metabolism*
;
Metabolic Engineering
;
Carbon/metabolism*
6.Microbial remediation of cadmium-contaminated soils and its mechanisms: a review.
Wenting XU ; Guoliang CHEN ; Zhihui QU ; Bixin LIANG ; Teng MAO ; Huan LIANG ; Zhang CHEN ; Zhixian LI
Chinese Journal of Biotechnology 2023;39(7):2612-2623
Excessive levels of cadmium (Cd) in soil exert serious negative impacts on soil ecosystems. Microorganisms are a common component of soil and show great potential for mitigating soil Cd. This review summarizes the application and remediation mechanisms of microorganisms, microbial-plants, and microbial-biochar in Cd-contaminated soil. Microorganisms such as Bacillus, Acinetobacter, Pseudomonas, and arbuscular mycorrhizal fungi (AMF) can change the biological validity of Cd through adsorption, mineralization, precipitation and dissolution. Different factors such as pH, temperature, biomass, concentration, and duration have significant effects on Cd bioavailability by microorganisms. Pseudomonas, Burkholderia, and Flavobacterium can promote the uptake of Cd2+ by hyperaccumulator through promotion and activation. Biochar, a soil amendment, possesses unique physicochemical properties and could act as a shelter for microorganisms in agriculture. The use of combined microbial-biochar can further stabilize Cd compared to using biochar alone.
Cadmium
;
Ecosystem
;
Soil Pollutants
;
Charcoal/chemistry*
;
Soil/chemistry*
7.Development of a Multi-parameter Pulmonary Function Test System.
Xilin YE ; Yueming CHEN ; Jilun YE ; Bing LIU
Chinese Journal of Medical Instrumentation 2023;47(3):268-271
To comprehensively evaluate the human body's respiratory, circular metabolism and other functions, and to diagnose lung disease, an accurate and reliable pulmonary function test (PFT) is developed. The system is divided into two parts:hardware and software. It realizes the collection of respiratory, pulse oxygen, carbon dioxide, oxygen and other signals, and draws flow-volume curve (FV curve), volume-time curve (VT curve), respiratory waveform, pulse wave, carbon dioxide and oxygen waveform in real time on the upper computer of the PFT system, and conducts signal processing and parameter calculation for each signal. The experimental results prove that the system is safe and reliable, it can accurately measure the basic functions of human body, and provide reliable parameters, and has good application prospects.
Humans
;
Carbon Dioxide
;
Respiratory Function Tests
;
Oxygen
;
Heart Rate
8.Amygdalin Ameliorates Liver Fibrosis through Inhibiting Activation of TGF-β/Smad Signaling.
Zhun XIAO ; Qiang JI ; Ya-Dong FU ; Si-Qi GAO ; Yong-Hong HU ; Wei LIU ; Gao-Feng CHEN ; Yong-Ping MU ; Jia-Mei CHEN ; Ping LIU
Chinese journal of integrative medicine 2023;29(4):316-324
OBJECTIVE:
To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro.
METHODS:
Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed.
RESULTS:
High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01).
CONCLUSIONS
Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.
Rats
;
Male
;
Mice
;
Animals
;
Transforming Growth Factor beta/metabolism*
;
Amygdalin/therapeutic use*
;
Endothelial Cells/metabolism*
;
Olive Oil/therapeutic use*
;
Rats, Wistar
;
Smad Proteins/metabolism*
;
Liver Cirrhosis/metabolism*
;
Liver
;
Transforming Growth Factor beta1/metabolism*
;
Signal Transduction
;
Collagen Type I/metabolism*
;
Carbon Tetrachloride
;
Hepatic Stellate Cells
9.Effect of mycophenolate mofetil alleviates carbon tetrachloride-induced liver fibrosis in mice.
Peng DING ; Pengpeng ZHANG ; Hao LI ; Yingzi MING
Journal of Central South University(Medical Sciences) 2023;48(6):821-828
OBJECTIVES:
Hepatic fibrosis is a serious pathological consequence of chronic liver disease. Mycophenolate mofetil (MMF) is a commonly used immunosuppressant after organ transplant. However, the relationship between MMF and hepatic fibrosis remains unclear. This study aims to explore the effect of MMF on hepatic fibrosis in mice and the potential mechanism.
METHODS:
A total of 24 mice (male, 8-week old, C57BL/6) were randomly divided into a control group, a MMF group, a carbon tetrachloride (CCl4) group and a CCl4+MMF group (n=6 in each group). After the mice were sacrificed, the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected. The liver tissues were taken up for Masson staining and collagen I (COL1) immunohistochemistry. The levels of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) were detected by Western blotting. Finally, the levels of mRNA for TGF-β1, α-SMA, and COL1 were detected using real-time PCR.
RESULTS:
Compared with the CCl4 group, the ALT and AST levels were lower (both P<0.05), the degree of liver fibrosis was alleviated, and the deposition of COL1 in the liver was significantly decreased (P<0.01) in the CCl4+MMF group. Compared with the CCl4 group, the protein expression levels of TGF-β1 and α-SMA were significantly decreased (both P<0.05) and the relative expression levels of TGF-β1, α-SMA and COL1 mRNA in the liver were significantly decreased (all P<0.05) in the CCl4+MMF.
CONCLUSIONS
MMF could reduce CCl4-induced hepatic fibrosis, which might be related to the inhibition of TGF-β1. This study is expected to provide a target for the treatment of hepatic fibrosis.
Male
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Mycophenolic Acid/therapeutic use*
;
Carbon Tetrachloride/toxicity*
;
Transforming Growth Factor beta1/genetics*
;
Liver Cirrhosis/drug therapy*
;
RNA, Messenger
10.Performance of exhaled carbon monoxide measurement in smoking cessation clinics and its influence on patients' willingness and behavior for smoking cessation.
Chinese Journal of Epidemiology 2023;44(7):1063-1067
Objective: To evaluate the performance of exhaled carbon monoxide measurement in smoking cessation clinics and its influence on patients' willingness and behavior for smoking cessation in China. Methods: Data of 41 566 patients who visited 257 smoking cessation clinics equipped with exhaled carbon monoxide detectors from 2019 to 2021 were selected to study the relationship between exhaled carbon monoxide measurement and patients' willingness to quit smoking as well as smoking cessation rate in those who completed follow up. Results: Only 21 470 (51.7%) of the patients received exhaled carbon monoxide measurement in the first visit. Patients who had exhaled carbon monoxide measurement were 1.87 (95%CI: 1.78-1.96) times more likely to have stronger willingness to quit smoking. The follow up results indicated that the patients with exhaled carbon monoxide measurement in the first visit were 1.10 (95%CI: 1.05-1.16) times more likely to quit smoking one month later than those without the measurement, and 1.22 (95%CI: 1.17-1.29) times more likely to quit smoking three months later than those without measurement. Conclusions: Exhaled carbon monoxide measurement can improve patients' willingness to quit smoking and increase smoking cessation rate. However, the testing rate is low in smoking cessation clinics at present. It's important to promote the equipment and utilization of exhaled carbon monoxide detector in smoking cessation clinics.
Humans
;
Smoking Cessation
;
Carbon Monoxide/analysis*
;
Smoking
;
Tobacco Smoking
;
China

Result Analysis
Print
Save
E-mail