1.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
2.Carbon footprint accounting of traditional Chinese medicine extracts based on life cycle assessment: a case study of mulberry leaf extract from an enterprise.
Zhi-Min CI ; Jian-Xiang OU ; Qiang YU ; Chuan ZHENG ; Zhao-Qing PEI ; Li-Ping QU ; Ming YANG ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2025;50(1):120-129
Under the background of carbon peaking and carbon neutrality goals, the Ministry of Ecology and Environment, together with 15 national ministries and commissions, has formulated the Implementation Plan on Establishing a Carbon Footprint Management System, and it is urgent for traditional Chinese medicine(TCM) pharmaceutical enterprises to carry out research on carbon footprint accounting methods of related products. Based on the life cycle assessment(LCA) theory, taking mulberry leaf extract produced by a certain enterprise as an example, this study analyzed the carbon footprint of TCM extracts during the life cycle. The results show that for every 1 kg of product produced, the carbon emissions from the stages of raw material acquisition, transportation, and extract production are-20.569, 1.205, and 173.577 kgCO_2eq(CO_2 equivalent), respectively. The carbon footprint of the product is 154.213 kgCO_2eq·kg~(-1). In addition, the carbon emission is the highest in the production stage, in which the consumption of ethanol solvents makes the greatest contribution to the carbon footprint, accounting for 25.71%, more than one-fourth of the total carbon footprint. The second contribution was from the treatment process of TCM residues, accounting for 19.67%, closely followed by wastewater treatment(17.71%), the consumption of hot steam(17.43%), and drinking water(16.90%). The consumption of electric power and packaging materials has a smaller carbon emission of 2.58%. In particular, the carbon emission caused by the consumption of packaging materials is only 0.04%, which is negligible. The results of the study are expected to provide a reference for TCM enterprises to carry out research on the carbon footprint of products, offer ideas for collaborative innovation in reducing pollution and carbon emissions throughout the entire industry chain of TCM, and develop new quality productivity of modern TCM industry based on green and low-carbon manufacturing.
Morus/chemistry*
;
Plant Leaves/chemistry*
;
Carbon Footprint
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts/analysis*
;
Medicine, Chinese Traditional
3.Exploration and application of pyrolysis in production of fuel gas from traditional Chinese medicine solid waste under "dual carbon" goals.
Ying-Lei LU ; Xu LONG ; Ke-Ying WANG ; Jing-Li LIU ; Yan-Lei ZHANG ; Yu-Ping TANG
China Journal of Chinese Materia Medica 2025;50(6):1437-1448
Traditional Chinese medicine(TCM) solid waste is characterized by widespread availability, renewability, and substantial production volume. In the context of the "dual carbon" goals, the pyrolysis of TCM solid waste for producing fuel gas for recycling in pharmaceutical production has emerged as a crucial strategy for optimizing the energy structure in the TCM industry and developing renewable energy. This paper comprehensively reviews both internal and external factors that influence the pyrolysis of TCM solid waste. Internal factors encompass moisture content, particle size, ash content, and the morphology of the raw materials, while external factors include pyrolysis conditions, equivalence ratios, types of gasifiers, and gasifying agents. Furthermore, this paper details the challenges associated with the pyrolysis of TCM solid waste, such as the dispersion of feedstocks, the diversity of resources, the complexity of the pyrolysis process, and the variations in gasifier performance. Finally, this paper proposes measures to address these challenges. This paper aims to provide insights into the development of a circular economy for TCM resources and the advancement of low-carbon energy utilization in the TCM industry.
Pyrolysis
;
Carbon/chemistry*
;
Medicine, Chinese Traditional
;
Solid Waste/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Gases/chemistry*
4.Evaluating the impact of Carbon Emission Trading Policy on pan-cancer incidence among middle-aged and elderly populations: a quasi-natural experiment.
Chuang YANG ; Yiyuan SUN ; Yihan LI ; Lijun QIAN
Environmental Health and Preventive Medicine 2025;30():43-43
BACKGROUND:
Cancer is a major public health concern, particularly among middle-aged and elderly populations, who are disproportionately affected by rising cancer incidence. Environmental pollution has been identified as a significant risk factor for cancer development. China's Carbon Emission Trading Policy (CETP), implemented in pilot regions since 2013, aims to reduce carbon emissions and improve air quality. This study evaluates the impact of CETP on pan-cancer incidence, with a focus on its effects on specific cancer types and vulnerable populations.
METHODS:
This quasi-natural experiment utilized data from the China Health and Retirement Longitudinal Study (CHARLS) and environmental data from the China National Environmental Monitoring Center (2011-2018). A staggered difference-in-differences (DID) model was employed to estimate the impact of CETP on cancer incidence. Robustness tests, including parallel trend tests, placebo analysis, and entropy balancing, validated the findings. Subgroup analyses were performed to assess the policy's heterogeneous effects based on gender, Body Mass Index (BMI), and smoking status.
RESULTS:
CETP implementation significantly reduced the incidence of six cancer types: endometrial, cervical, gastric, esophageal, breast, and lung cancers. Overall, pan-cancer incidence significantly declined post-policy implementation (CETP × POST: -47.200, 95% CI: [-61.103, -33.296], p < 0.001). The policy demonstrated stronger effects in highly polluted areas and among individuals with poorer mental health. Subgroup analysis revealed that females, individuals with lower BMI, and non-smokers experienced more substantial benefits.
CONCLUSIONS
CETP significantly reduces cancer incidence by improving environmental quality and influencing mental health, with particularly strong effects observed among high-risk populations. This study highlights the important role of environmental economic policies in mitigating cancer burden and promoting public health. Future research should further explore the long-term impacts of this policy and its applicability across different national and regional contexts.
Humans
;
Incidence
;
Neoplasms/epidemiology*
;
China/epidemiology*
;
Middle Aged
;
Female
;
Male
;
Aged
;
Air Pollution/legislation & jurisprudence*
;
Carbon/analysis*
;
Longitudinal Studies
;
Air Pollutants/analysis*
;
Environmental Exposure
5.Development of a Microstream End-Tidal Carbon Dioxide Monitoring System with Integrated Gas Circuit.
Yanan LIU ; Xuedong SONG ; Qi YIN ; Fuhao KANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(2):204-211
End-tidal carbon dioxide monitoring is an important means of evaluating human lung function and is widely used in fields such as clinical emergency treatment and cardiopulmonary resuscitation. This paper develops a microstream end-tidal carbon dioxide monitoring system. It adopts an integrated gas circuit design to further reduce the size of the equipment. The system uses the method of calculating the root mean square (RMS) of differential pressure signals to regulate the gas circuit flow, enabling the system to stably operate at a flow state of 30 mL/min. In addition, by simultaneously detecting multiple environmental parameters such as temperature and pressure, the system realizes system state monitoring and gas parameter compensation. The test results show that various indicators of the system meet the requirements of relevant standards, laying a good foundation for subsequent engineering applications.
Carbon Dioxide/analysis*
;
Equipment Design
;
Monitoring, Physiologic/methods*
;
Humans
6.Selection and reflection on ecological fine manufacturing model of traditional Chinese medicine under "dual carbon" goals.
Dong-Yin YANG ; Zi-Qian WANG ; Xin-Hao WAN ; Ying LIU ; Meng-Xin HUANG ; Xiang WANG ; Wei-Feng ZHU ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2024;49(24):6549-6557
At present, China's traditional Chinese medicine(TCM) industry is developing rapidly with the support of modern science and technology. While promoting economic development and improving national health, it has brought multiple environmental problems. Under the "dual carbon" goals, the ecological fine manufacturing of TCM may become one of the breakthroughs for the TCM industry to practice low-carbon economy. From the perspective of low-carbon economy and considering the current situation of TCM pharmaceutical manufacturing, this paper analyzes the problems and shortcomings of the TCM pharmaceutical industry. In view of the key factors influencing the quality of TCM preparations under the ecological fine manufacturing mode, this paper proposes a practical and feasible selection plan for the ecological fine manufacturing mode of TCM, aiming to provide research ideas and a theoretical basis for the TCM industry in helping to achieve the goals of carbon peaking and carbon neutrality.
Drugs, Chinese Herbal/economics*
;
Medicine, Chinese Traditional
;
Carbon/analysis*
;
China
;
Drug Industry/economics*
7.Effect of extra corporeal reducing pre-load on pulmonary mechanical power in patients with acute respiratory distress syndrome.
Wenwen ZHANG ; Xin'gang HU ; Lixia YUE ; Jie ZHANG ; Zhida LIU ; Shuai GAO ; Zhigang ZHAO ; Xinliang LIANG
Chinese Critical Care Medicine 2024;36(12):1244-1248
OBJECTIVE:
To explore the effects of veno-venous extra corporeal carbon dioxide removal (V-V ECCO2R) on local mechanical power and gas distribution in the lungs of patients with mild to moderate acute respiratory distress syndrome (ARDS) receiving non-invasive ventilation.
METHODS:
Retrospective research methods were conducted. Sixty patients with mild to moderate ARDS complicated with renal insufficiency who were transferred to the respiratory intensive care unit (RICU) through the 96195 platform critical care transport green channel from January 2018 to January 2020 at the collaborative hospitals of Henan Provincial People's Hospital were enrolled. According to different treatment methods, they were divided into a conventional treatment group and an ECCO2R group, with 30 patients in each group. Both groups received standard treatments including primary disease treatment, airway management, and non-invasive ventilation. The conventional treatment group received bedside continuous renal replacement therapy (CRRT), and the ECCO2R group received V-V ECCO2R treatment. General information of patient such as gender, age, cause of disease, and acute physiology and chronic health evaluation II (APACHE II) were recorded; arterial blood gas analysis was performed before treatment and at 12 hours and 24 hours during treatment, recording arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), and oxygenation index (PaO2/FiO2). Respiratory mechanics parameters [tidal volume, respiratory rate, maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP)] were recorded, and the rapid shallow breathing index (RSBI) was calculated; electrical impedance tomography (EIT) was used to measure regional of interest (ROI) values in different lung areas at 12 hours and 24 hours of treatment, and the pulmonary mechanical energy was calculated.
RESULTS:
The arterial blood gas analysis indicators, respiratory mechanics parameters, and pulmonary mechanical energy of patients in the conventional treatment group and ECCO2R group improved significantly after 24 hours of treatment compared to 12 hours of treatment (all P < 0.05). The levels of PaCO2, RSBI, total mechanical power, and non-dependent zone mechanical power in the ECCO2R group were significantly lower than those in the conventional treatment group at both 12 hours and 24 hours during the treatment [PaCO2 (mmHg, 1 mmHg ≈ 0.133 kPa): 44.03±2.96 vs. 49.96±2.50 at 12 hours, 41.65±3.21 vs. 48.53±2.33 at 24 hours; RSBI (times×min-1×L-1): 88.67±4.05 vs. 92.35±4.03 at 12 hours, 77.66±4.64 vs. 90.98±4.21 at 24 hours; total mechanical power (mJ): 10.40±1.15 vs. 12.93±1.68 at 12 hours, 11.13±1.18 vs. 14.05±1.69 at 24 hours; non-dependent zone mechanical power (mJ): 7.15±0.84 vs. 7.98±0.75 at 12 hours, 7.77±0.93 vs. 9.13±1.10 at 24 hours], and MEP and MIP in the ECCO2R group were significantly higher than those in the conventional treatment group at both 12 hours and 24 hours during the treatment [MEP (cmH2O, 1 cmH2O ≈ 0.098 kPa): 89.88±5.04 vs. 86.09±5.57 at 12 hours, 96.57±2.59 vs. 88.66±2.98 at 24 hours; MIP (cmH2O): 47.64±2.82 vs. 41.93±2.44 at 12 hours, 60.11±6.53 vs. 43.63±2.80 at 24 hours], the differences were statistically significant (all P < 0.05).
CONCLUSIONS
V-V ECCO2R combined with non-invasive ventilation can effectively reduce the regional tidal volume, mechanical power, and respiratory rate in the non-gravitational dependent zones of patients with mild to moderate ARDS, and improve respiratory distress and oxygenation status.
Humans
;
Respiratory Distress Syndrome/physiopathology*
;
Retrospective Studies
;
Carbon Dioxide
;
Blood Gas Analysis
;
Lung/physiopathology*
;
Intensive Care Units
;
Male
;
Female
;
Noninvasive Ventilation/methods*
;
Continuous Renal Replacement Therapy/methods*
;
APACHE
;
Middle Aged
8.Research progress on the application of end-tidal carbon dioxide monitoring in prehospital emergency care.
Jingtao MA ; Renbao LI ; Qin LI ; Wei HAN
Chinese Critical Care Medicine 2024;36(12):1340-1344
Prehospital emergency care is the primary stage in the treatment of critically ill patients, where efficient and accurate monitoring methods are crucial for patient survival and prognosis. End-tidal carbon dioxide (EtCO2) monitoring is a real-time, non-invasive method that can sensitively capture the status of respiratory, circulatory, and metabolic functions, particularly in the urgent and complex pre-hospital environment, a immediate detection and non-invasive method, can sensitively capture the respiratory, circulatory, and metabolic status of patients. It provides valuable guidance for rapid decision-making and precise interventions. This is particularly valuable in the complex and urgent prehospital environment, providing critical data for rapid decision-making and precise intervention. This paper systematically reviews the advancements in the application of EtCO2 monitoring across various fields, including sepsis identification, trauma assessment, cardiac arrest, respiratory critical care, endotracheal intubation confirmation, and management of metabolic diseases, aiming to explore its application value and prospects in pre-hospital emergency care.
Humans
;
Emergency Medical Services/methods*
;
Carbon Dioxide/analysis*
;
Monitoring, Physiologic/methods*
;
Critical Illness
;
Capnography/methods*
9.Performance of exhaled carbon monoxide measurement in smoking cessation clinics and its influence on patients' willingness and behavior for smoking cessation.
Chinese Journal of Epidemiology 2023;44(7):1063-1067
Objective: To evaluate the performance of exhaled carbon monoxide measurement in smoking cessation clinics and its influence on patients' willingness and behavior for smoking cessation in China. Methods: Data of 41 566 patients who visited 257 smoking cessation clinics equipped with exhaled carbon monoxide detectors from 2019 to 2021 were selected to study the relationship between exhaled carbon monoxide measurement and patients' willingness to quit smoking as well as smoking cessation rate in those who completed follow up. Results: Only 21 470 (51.7%) of the patients received exhaled carbon monoxide measurement in the first visit. Patients who had exhaled carbon monoxide measurement were 1.87 (95%CI: 1.78-1.96) times more likely to have stronger willingness to quit smoking. The follow up results indicated that the patients with exhaled carbon monoxide measurement in the first visit were 1.10 (95%CI: 1.05-1.16) times more likely to quit smoking one month later than those without the measurement, and 1.22 (95%CI: 1.17-1.29) times more likely to quit smoking three months later than those without measurement. Conclusions: Exhaled carbon monoxide measurement can improve patients' willingness to quit smoking and increase smoking cessation rate. However, the testing rate is low in smoking cessation clinics at present. It's important to promote the equipment and utilization of exhaled carbon monoxide detector in smoking cessation clinics.
Humans
;
Smoking Cessation
;
Carbon Monoxide/analysis*
;
Smoking
;
Tobacco Smoking
;
China
10.Associations between indoor volatile organic compounds and nocturnal heart rate variability of young female adults: A panel study.
Xue Zhao JI ; Shan LIU ; Wan Zhou WANG ; Ye Tong ZHAO ; Lu Yi LI ; Wen Lou ZHANG ; Guo Feng SHEN ; Fu Rong DENG ; Xin Biao GUO
Journal of Peking University(Health Sciences) 2023;55(3):488-494
OBJECTIVE:
To investigate the association between short-term exposure to indoor total volatile organic compounds (TVOC) and nocturnal heart rate variability (HRV) among young female adults.
METHODS:
This panel study recruited 50 young females from one university in Beijing, China from December 2021 to April 2022. All the participants underwent two sequential visits. During each visit, real time indoor TVOC concentration was monitored using an indoor air quality detector. The real time levels of indoor temperature, relative humidity, noise, carbon dioxide and fine particulate matter were monitored using a temperature and humidity meter, a noise meter, a carbon dioxide meter and a particulate counter, respectively. HRV parameters were measured using a 12-lead Holter. Mixed-effects models were used to evaluate the association between the TVOC and HRV parameters and establish the exposure-response relationships, and two-pollutant models were applied to examine the robustness of the results.
RESULTS:
The mean age of the 50 female subjects was (22.5±2.3) years, and the mean body mass index was (20.4±1.9) kg/m2. During this study, the median (interquartile range) of indoor TVOC concentrations was 0.069 (0.046) mg/m3, the median (interquartile range) of indoor temperature, relative humidity, carbon dioxide concentration, noise level and fine particulate matter concentration were 24.3 (2.7) ℃, 38.5% (15.0%), 0.1% (0.1%), 52.7 (5.8) dB(A) and 10.3 (21.5) μg/m3, respectively. Short-term exposure to indoor TVOC was associated with significant changes in time-domain and frequency-domain HRV parameters, and the exposure metric for most HRV parameters with the most significant changes was 1 h-moving average. Along with a 0.01 mg/m3 increment in 1 h-moving average concentration of indoor TVOC, this study observed decreases of 1.89% (95%CI: -2.28%, -1.50%) in standard deviation of all normal to normal intervals (SDNN), 1.92% (95%CI: -2.32%, -1.51%) in standard deviation of average normal to normal intervals (SDANN), 0.64% (95%CI: -1.13%, -0.14%) in percentage of adjacent NN intervals differing by more than 50 ms (pNN50), 3.52% (95%CI: -4.30%, -2.74%) in total power (TP), 5.01% (95%CI: -6.21%, -3.79%) in very low frequency (VLF) power, and 4.36% (95%CI: -5.16%, -3.55%) in low frequency (LF) power. The exposure-response curves showed that indoor TVOC was negatively correlated with SDNN, SDANN, TP, and VLF when the concentration exceeded 0.1 mg/m3. The two-pollutant models indicated that the results were generally robust after controlling indoor noise and fine particulate matter.
CONCLUSION
Short-term exposure to indoor TVOC was associated with significant negative changes in nocturnal HRV of young women. This study provides an important scientific basis for relevant prevention and control measures.
Humans
;
Female
;
Adult
;
Young Adult
;
Air Pollutants/analysis*
;
Heart Rate/physiology*
;
Volatile Organic Compounds/analysis*
;
Carbon Dioxide
;
Particulate Matter/adverse effects*
;
Environmental Pollutants

Result Analysis
Print
Save
E-mail